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The Un-Simple Analytics 
of Temporal Value Calculation*

by
David Laibman**

I

The classical-Marxian tradition proposes a measure of value, as distinct 
from money, that would be present even in the extreme case of a one-good, 
aggregative macromodel. This is, of course, the quantity of labor, or labor­
time, needed to produce a unit of goods. “All” one needs to make this 
operational -in addition to the mysterious all-purpose single good- is the 
assumption that labor is homogeneous with regard to skill, efficiency, and 
effort. Production can then be represented by a flow of material input M, a flow 
of labor L  cooperating with and processing that input, and a corresponding 
flow of output X :

M, L —> X

The unit value of the (gross) output is the sum of direct and indirect labor 
used to produce one unit, where the indirect labor is the labor embodied in the 
material input M. Since this last amount of labor is also a sum of direct and 
indirect components, we have an infinite regress, which however corresponds 
to a very simple simultaneous calculation. With X representing the (unknown) 
unit value, the equation

XM + L = XX

* I wish to acknowledge the expert mathematical assistance of Professor Joseph Krieger, of the 
Physics Department, Brooklyn College, City University of New York, who contributed 
significantly to the solution of the problem and formulation of the results with which this 
paper is concerned. Useful comments from referees are also acknowledged. The author is, as 
always, alone responsible for the finished product.

** City University of New York, Department of Economics.
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has the solution

x = L = L/X = 1 
X-M 1-M/X 1 - a ’

where the first equality shows X to be current labor divided by the net product, 
X - M , and the second and third replace the absolute quantities with the more 
analytically useful technological ratios: unit labor input, 1, and unit material 

input, a .
This formalization has a venerable lineage in economic thought (see, e.g., 

Dobb, 1955; Meek, 1956. Brody, 1970), as it represents a point of intersection 
between the “micro” and “macro” worlds of economics. To be sure, one can 
study the relative price aspect of valuation using real relative prices or money 
prices in a model with multiple goods, without reference to an aggregative 
framework. One can also examine macroeconomic processes without invoking 
the value concept: as long as we are willing to use the aggregate (“one good”) 
model at all, why assume the additional burden of X, when quantities of real 
output-cum-income, X, and (if desired) quantities of money in its own 
dimension are all that we need to describe aggregate “real” and price 
phenomena? Finally, to complete the list, I note the existence of a Marx- 
derived school of thought that sees value -the qualitative embodiment of 
abstract labor- as a key to unraveling the mysteries of market-shrouded social 
relations. Again, and whatever one makes of this line of thought, calculation of 
a macroeconomic labor value coefficient, X, is clearly irrelevant to it.1

Nevertheless, the idea of a quantity of labor embodied in goods carries a 
strong intuitive appeal that has attracted economists in every era, especially 
those working in the classical tradition. The value concept provides a manage­
able way to address certain kinds of micro phenomena, such as the tension 
between perceived and realized rates of return, in an aggregative framework, 
without the entire apparatus of relative prices (see Laibman, 1997). It makes 
sense to complete the theory toolkit with the most rigorous possible version of 
the static X-determination model.

The classical tradition, however, is practically defined by dynamic 
assumptions: in particular, technical change and growth as the unavoidable

1. My own efforts to address this question in general will be found in Laibman, 1992, chapters 1- 
3, and, most recently, in a forthcoming paper on the problem of labor value in a multi- 
commodity, albeit static, context; Laibman, 2002.
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starting point for every inquiry into economic phenomena, including those 
concerned with value formation. But when we try to define and solve a dynamic 
equation to determine X in the presence of continuous technical change, we 
find that the matter is much more complex than the simple formalization above 
implies. This paper is devoted to analysis of this problem, which has not, to this 
writer’s knowledge, been posed, let alone solved, previously.

II
The dynamic assumption examined in this paper is quite simple: technical 

change is taking place. In the one-good world, this is represented by continual 
change in the two technical coefficients, a  and 1. This means, of course, that we 
have to rethink the static formalization of section I.

Begin by writing

M(t), L(t) =* X (t + 1). (1)

This is a dynamic (in the limited sense required here) version of the earlier 
representation of production, but with time subscripts added. Inputs occur at 
time t, while output appears at t + 1. We thus have a period (discrete time) 
formulation, in which production takes time: inputs and outputs must be 
carefully time dated, with inputs valued and applied in one period, and output 
resulting in the subsequent one.

The technical coefficients, reformulated to correspond to this dynamic 

picture, are:

g  M(t) , L(t)

' X (t+ 1 )  ‘ X ( t+ 1 ) '

The period 0 values are a 0 = M (0)/X(1), and 1Q = L(0)/X (1); note that X (0) 
does not play an explicit role. The fundamental value equation posits dynamic 
production, with unit value also changing through time:

X (t + 1) X  (t + 1) = X (t) M (t) + L (t)

x (t+1) — x (t) M(t) 

X (t + 1)
+

L(t)
X (t + 1)

X ( t  + 1 )  — X (t)  c t( +  l t ( 2 )
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Eq. (2) describes value formation as a process operating in time, in which 
input values and output values differ as a result of technical change. The fact 
that it is production, as opposed to realization, that inherently takes time is 
embodied in the lag structure: inputs at one period, outputs in the next, with 
realization -and therefore unit value formation- occurring at the moment at 
which output appears.

By induction over t in (2), and without imposing at this point any 
particular assumptions about the time paths of the technical coefficients, we 
obtain:

t
A,(t) = A,(0)at_1...a 0+ Z  « ^ . . . a . l ^  (3)

T = 1

The reader can verify that this form generates the entire set of X(t) values 
such as X(l) = X(0)aQ + 10 and X(2) = X (0)a1a Q + + l j , given the convention
that the product of zero terms = 1 ( a  _ l a  = 1).

We will examine different assumptions about the time path of a t , including 
the postulate of rising a , or “capital-deepening” technical change (see below). 
I begin, however, with the case of progressive technical change, in which both 
input coefficients are falling. (Falling lt , or rising labor productivity, is assumed 
throughout.) The most general progressive assumption is that the two input 
coefficients, a t and lt , fall ultimately: a t , lt -»  0 as t -»  <». This is enough to 
guarantee that the first term in (3) eventually approaches zero. For the second 
term we need the slightly stronger assumption on the material input coefficient 
that a t_j < a t < 1, for all t. This term can be written:

t - l
O^t-l ^  ^ t - 2 · · ·  CIt I t - 1 ^t-1 ’

t =  ]

The summation in the first term of this expression cannot be greater than

max(l0 ,..., lt_2)(odf2 + .. .  + a , +1) =

max 1 - a ,  '

The second term in (3) therefore cannot be greater than



THE UN-SIMPLE ANALYTICS OF TEMPORAL VALUE CALCULATION 9

which clearly vanishes as t —> ° ° . So we know that the temporally correct unit 
value coefficient approaches zero under continuous progressive technical 
change -  something that in itself is no surprise.

Further analysis of the time path of l , however, will contain some surprises; 
to find these requires a somewhat stronger restriction on the path of technical 
change. In what follows, I will adopt the simplest possible assumption of 
constant proportional change in the technical coefficients; this assumption, 
after all, is the systematic expression of the case in which the rate of change is 
constant on average, over long periods of time. We then define growth factors of 
a  and 1:

P  p  _  lt+i
u « "  a t ’ u r  , »

resulting in the dynamic equations

Oit -  a 0^a> t̂ —

from which, finally, we have a fully explicit form of the difference equation for 
the time path of unit value:

^ ( t+ l )  = X (t)a 0G|x + l0G1t. (4)

It should be noticed that growth factors (unlike growth rates) are always 
non-negative; are pure numbers; and are equal to unity when no growth 
(change) is taking place. Technical progress, as before, lowers the labor input 
per unit of output over time: G, < 1. Ga > 1 represents the case of a rising 
“composition of capital,” or capital deepening2 3; Ga = 1 is the case of neutral

2. The absence of capital stocks in this model will be noticeable. Particularly with a view to 
studying industrial production, the choice of a pure circulating-capital model would seem to 
be unwarranted. I make this assumption only because it is considered to be the most general 
form of classical models of production (see various entries in Kurz and Salvadori, 1998). In 
other work, I have used its opposite, the pure fixed capital case, as well as hybrid models 
containing both fixed and circulating capital.

3. In a classical production model of this type, neutrality and bias of technical change are 
measured only with respect to the trend of a t . There are no continua of techniques at each 
moment of time, and no marginal products; the distinctions among various definitions of 
neutrality that emerge in neoclassical contexts -Harrod, Hicks, Solow, Uzawa, etc -  therefore 
do not arise here (see, i.a., Wan, 1971, ch. 5).
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and variable (time-dependent) non-homogeneous term. That continuous-time 
equation has a general solution, as is well known. However, the integrals 
involved in the continuous counterpart to (4) are non-algebraic, which suggests 
that no closed-form representation of the solution is possible. I therefore 
pursue the matter in the form of the discrete-time difference equation (4). This 
formulation also has the advantage of facilitating confirmation of results by 
numerical simulation. I note at the outset that a mathematically “interesting” 
problem emerges from nothing more than postulating technical coefficients 
that change at a constant rate over time.

I l l

We may pursue the solution to (4) as follows.
Begin by taking the simplest possible case and eliminating technical 

change altogether: Ga = 1 and G, = 1. (4) then reduces to ^ ( t + 1) = >.(t)a + 1, a 
simple first-order difference equation, whose solution is

Mt) = M 0 )-
l-oc

or-i-
1-ot (5)

The second term corresponds to the “particular integral” of ordinary dif­

ferential equations; —-— is the value for X predicted by the static model. The
1 - a

adjustment of the arbitrary initial unit value, X(0) toward its center, or 
equilibrium, is evident (we may think of X(0) as some sort of “marker” unit 
value, although the distinction between market and equilibrium values is 
admittedly somewhat abstract in a one-good model). The first term -the 
“complementary function”-  vanishes over time, since a  < 1 in a productive 
economy, and X(t) converges to a horizontal asymptote.

We next allow technical progress to occur, although at first we restrict it to 

a neutral form: Ga = 1, G, < 1. Eq. (4) now takes the form ^ ( t + 1) = A.(t)a0 + 

f  IqGJ. The solution, whose derivation follows by analogy with the previous 

case (we will obtain it formally below) is:

M 0)-
G ,- a 0

«Ó +
10G?  ̂

G, -  a 0 (6)
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technical change3; and Ga < 1 is capital-“shallowing.”
The first term of (6) again is the “complementary function”; it exists due

to M O )*———  the deviation of unit value at time 0 from its central tendency 
G ,- a 0 J

at t = 0. As before, this term vanishes as t -> °° . The second term is the 
“particular integral”: the asymptotic target toward which X converges, a target 
that is now itself falling due to technical progress. The first term vanishes much 
more rapidly, since it is reasonable to assume a  < G ,, justifying the different 
interpretations given to the two terms.

Eq. (6) establishes, for the case of neutral technical change, a general 
principle of motion for X. The unit value must eventually fall, when unit labor 
input is falling at some constant rate. It will rise, beginning at t = 0, when

X (0) < — -—  ; with the rapid disappearance of the first term, however, its 
G ,- a 0

movement must eventually be dominated by the second term, also falling. 
Nothing in this most temporally rigorous account falsifies the intuition from 
the static formulation with which we began: falling 1 (with constant a )  means 
falling X. The dynamic version, however, does allow us to examine “out-of­
equilibrium” movement,4 when X(0) is not equal to its benchmark level,

Gr a 0‘

Moreover, that benchmark level is not the same as the one emerging from

the static model: — - —  > — —  . This is a genuine temporal result: while the
G ,-a 0 l - a 0

trend of X can be predicted from the static formulation, its level is permanently 
higher than the level predicted from that same formulation.

4. It should perhaps be reemphasized that the macro unit value concept, 1, makes possible the 
paradoxical: analysis of value without exchange-value. The existence of a value coefficient as 
such implies the possibility of discrepancy between actual and benchmark quantities, as also 
between momentary (innovators’) and ultimate (realized) returns (see section I), without 
explicit representation of exchange-value and price in a multi-good framework. The X(t) story 
is a concentrated expression of a fully adequate multi-commodity model; since the properties 
of this model are still not fully understood even in a static context (see Laibman, 2002), study 
of its aggregative counterpart would appear to be justified.
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We now turn to the most general form of the dynamic value equation, eq. 
(4): both technical coefficients change over time. With a constant growth factor 
of a , Ga*  1, we have a k = a 0 G£, and the product in the first term of (3) can be 
written as

a t_ , . . .a o -a 0Ga ...oi0Ga

* t—1 ■+■ t—2 ■ +■ ... + 1 +0
= < O a

= a!,G
(l/2)t(t-l)

0

For the second term of (3), we evaluate

«t-i· .•aT = a 0G a1. . .a 0Ga

= oct T G Au 0 u a

where A = [(t — 1) + ( t - 2 )  + . . .  + x].

The sumy4 can be further processed

A = t + (x + 1) +. . .  + ( t - 1)

= x + (x + l) + ... + (x + t-x-l)

= [x + ... + x] + [l + 2 + ... + (t-x-l)]

t - x  terms t - x - 1  terms 

= T (t- T) + i  (t- T -1) (t- T)

= ̂ [(t2- t ) - ( * 2-T)].

Eq. (3), using the constant proportional growth restriction and remembering 
that lt_] = G,x l 10 , then becomes

A.(t) = X(0)ot‘ G“ *  £

= X(0)a¡)G (l/2)(t2-t)
a

-(1/2)(t2_t)
a (7)
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This solution is not closed-form, in that the sum in the second term does 
not have an algebraic counterpart. It can be verified, however, by forming X(t + 1), 
substituting the first term of (7) into the first term of X(t + 1) and simplifying -  
a procedure that reproduces the original difference equation (4).

We may note here that with Ga = 1 (the neutral case) the solution (7) 
reduces to

X.(t) = a^(0)  + i ^ ? Z  (G,/a0)\
Cj , t = i

The sum in this expression now has a simple geometric form, and is easily 
calculated to be

Gj-aj g ,
«o G , - a 0’

Substituting this into the expression for X(t) above, and rearranging, we get the 
solution for this case, (6).

IV
The question now is: in the general case with both a  and 1 changing, what 

have we got?
I will explore the properties of (7) by, first, reporting the results of 

numerical simulations; and, second, using (7), both observationally and 
numerically, to examine some properties of the path of X for non-integer values 

of t.
1. The capital-“shallowing” case: Ga < 1. A baseline simulation was run 

with oc0 = 0.75, 10 = 0.833, Ga = 0.999, and G, = 0.989.5 Both (4) and (7) were 
calculated, for 100 periods; the two calculations are identical to four decimal 
places, suggesting that (7) is indeed an accurate solution to (4). In this and all 
simulations with Ga < 1, X falls monotonically, as long as X(0) is set equal to or

5 Simulations were run on the City University of New York IBM mainframe system, using the 
IBM language PLI. I will be happy to send the source text and examples of data obtained to 

anyone requesting them.
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greater than its t = 0 benchmark: -  =3.33 · When X(0) is set below this
l - a 0

value, X(t) first rises, and falls thereafter.
2. The capital-deepening case: Ga > 1. Ignoring complementary-function 

effects by setting X(0) = 3.33,1 tried values for Ga such as 1.002,1.003 and 1.004. 
With Ga = 1.002, an interesting thing happens: X first falls, and only begins to 
rise at t = 72. The static formulation suggests monotonically rising unit value, 
so long as the output/labor ratio is growing more rapidly than material 
input/labor, as in this case. There is, however, evidently a temporal “drag” that 
causes X to fall initially. With Ga = 1.003 the same effect is observed, except 
that the turning point occurs much earlier, at t = 20. When Ga = 1.004, the 
temporal “drag” effect has disap-peared: X rises continuously.6

3. The general solution (7) -especially the superscripts in both terms 
involving the expression t2 - 1- suggests that the behavior of X might be more 
complex in the intervals between the integer values of t allowed by the discrete 
time formulation.7 There is no way that time can take on any values other than 
integers in the original dynamic equation (4), which therefore cannot be used 
to study this issue. In the solution, (7), however, there are no lagged values of X, 
and t can be given non-integer values in an approximation to continuous time. 
The only problem for this procedure concerns the summation term, which 
clearly can be calculated only at integer values of t. I have addressed this 
problem by using linear interpolation. For example, with S = the sum over t, 
we have S(2) and S(3). The value S(2.5) will be calculated as S(2) + 0.5[S(3) -  
S(2)].

Following this procedure, I returned to the simulations and allowed t to

6. For a sustained argument concerning conditions in which technical changes with rising a  may 
be the outcome of rational calculations by capitalists, see Laibman, 1997.

7. I note parenthetically that the expression t2- t  in (7) is possible only if time is a pure number, 
and that that is indeed the case for discrete time (difference) equations. The clue is that 
growth factors are pure numbers; so time must be as well. This only became clear to me while 
working out the solution (7). The concept of a period of time is completely abstract; there is 
no presumption of any actual unit of time (days, years, e.g.) being needed at all.
The use of non-integer values of t may seem to contradict the inherent limitation of difference 
equations to the case of discrete time. However, since numerical simulation of the 
continuous-time version of the model is extremely difficult, especially as that version also has 
no closed-form solution, examination of non-integer values of t in the discrete-time version
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rise in increments of 0.1, using the same baseline parameters as in the capital- 
shallowing case reported above. For the integer values of t, the figures for X(t) 
are identical to those found earlier. For the fractional values, however. X first 
rises to a maximum at t = 0.5 and then falls -  as we would expect from -j- (t2-t)

(recalling here that Ga < 1). In the intervals between 1 and 2, 2 and 3, and so 
on, X again first rises, reaching maxima at t = 1.3, t = 2.2 - 2.3 (the same value to 
four decimal places), t = 3.2 and t = 4.2. There are thus some interesting 
oscillatory movements for the non-integer ranges with t < 5; after that, X 
resumes its predicted downward movement, given Ga < 1.

It should be noted that even in the range (0,1), the maximum of X at t = 0.5,

which would be suggested by — (t - t )  = 0 , is only approximate, due to the
dt

presence of the other factors in both terms of (7). This is obscured by the 
broadness of the time increment (0.1) and by the use of only four decimal 
places in the reported values of X. If time is incremented by 0.01 and six 
decimal places are used, for example, the X maximum in the (0,1) interval 
appears at t = 0.48.

V
Returning to the larger perspective of the introduction, we can take stock. 

We have explored the properties of a difficult difference equation, pointing out 
-originally, I believe- that those difficulties present themselves as a result of 
the simplest and most obvious statement of the macroeconomic value 
calculation problem in a dynamic context.

The central result is that temporality in value formation does not alter the 
most general expectations of the trend behavior of the unit value coefficient 
over time. X will, for example, ultimately fall in the capital-shallowing case, and 
rise in the capital-deepening case. We do, however, find permanent temporal 
effects. First, the level of X is different when time-dating is applied. Second, its 
trend may only emerge after a period of adjustment, other than the one based 
on initial divergence of X(0) from its benchmark level. Finally, X may be subject 
to oscillations as time passes between two integer values, especially for small t.

Dynamic aggregate value formation is the foundation for the theory of 
long-period accumulation, technical change and crisis. For this reason, it is 
essential to get the story right, with all temporal effects taken into consideration, 
if only to offset fanciful claims emerging from certain quarters concerning the
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paradigmatic impact of “temporal” perspectives on (what is taken to be) Marx s
theory of the trajectory of capitalist society.
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ABSTRACT

The unit labor value of output, at the scale of the macroeconomy, is easily 
calculated in a static context. In dynamics, however, with careful time-dating of 
inputs and outputs and continual non-neutral technical change, the difference 
equation for the time path of unit value does not have a closed-form solution. 
This solution, approached by both analytical and simulation methods, 
duplicates major properties of the static formulation, but it also reveals 
permanent temporal effects on the value path, for neutral, material-input 
deepening and material-input shallowing technical change, as well as some 
unpredicted oscillatory behaviors for non-integer values of time.


