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Abstract

This dissertation has been held as part of the MSc. Program of Applied Economics
and Management, at the Department of Economic and Regional Development of
Panteion University in Athens. The MSc thesis took place from July of 2015 to
January of 2016. The thesis is dealing with the forecast of Value-at-Risk measure,
based on a dataset consisting of Stock indices (S&Pspo, EurostoXXse and FTSEiw),
Commodities (Copper, Silver and Gold COMEX) and Foreign Exchange Rates of
Dollar (Euro, Canadian Dollar and British Pound FOREX). The forecasts of this
empirical analysis have been done not only at one-day-ahead, as usual, but also at
multi-steps-ahead for 95% and 99% confidence level, modeling both inter-day and
intra-day data.

The economic uncertainty and volatility of today’s business environment
highlight the importance of incorporating risk assessment tools into forecasting
processes. Consequently, Value-at-Risk is a field of financial econometrics, which
fulfills the investors’ prerequisites, henceforth it has been studied thoroughly. One
main reason of this extensive research is the recent financial crisis, which intrigues the
interest of risk managers and financial institutions. In order to provide more reliable
Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts, they attempt to
investigate which models provide accurate and efficient predictions. Although there is
a plethora of forecasting models and applications of forecasting volatility in the
literature, this thesis has introduced a new adaptation at VaR estimate, as it presents
the performance of inter-day volatility by estimating the AR(1)-GARCH(1,1)-skT
model and intra-day volatility by estimating the AR(1)-HAR-RV-skT model.
Moreover, this dissertation was held based on the recommendations of the Basel
Committee of Banking Supervision.

Regarding for the results, the AR(1)-HAR-RV-skT model in an attempt to
forecast volatility does not appear to improve the accuracy of the VaR forecasts for
the 10-step-ahead and 20-step-ahead, both for 95% and 99% significance levels.
Furthermore, the HAR model is not as much appropriate as expected to be for each of
the different asset classes; Stocks, COMEX and FOREX. On the contrary regarding
the one-step-ahead forecasts, the HAR specification overcomes the GARCH. In all
the other cases, the GARCH specification is the superior model for forecasting the
VaR measure.

Keywords: Value-at-Risk, VaR, Expected Shortfall, ES, volatility forecasting, inter-
day data, intra-day data, multi-period-ahead, GARCH, HAR-RV, stocks,
commodities, exchange rates, forecasting accuracy.



[Tepidnyn

H Jwmlopotikny ovt) mpaypotomomnke o¢ péPOG TOL  METOMTLYLOKOD
[poypdupatog Epappocuéva Owovopikd kot Atoiknon, tov tunpatog Owovopikng
kot [eprpeperaxng Avéamroéng, Tavieiov [Havemompiov Adnvag. ExmovnOnke katd
™ xpovikn wepiodo loviog 2015 - Tavovdprog 2016. To Bépa g mAaICIOVETAL YOP®
amd v TpoPAreymn kat ektiunon tov Kwvdvvoo (Value-at-Risk, VaR) yoptopurokiov
KOl GUYKEKPUUEVOL LETOXDV E6NYUEVOV 6TO Ypnuatiot)plo (S&Psp, EurostoXXsp,
FTSEi00), eumopedoipumv VAKGOV (XoAkoD, apydpov Kot yxpucov), kabdg Kot
cuvalraypatikav wotiov (Evpo, Kavadikon Aorapiov kot Bpetavikng Aipag). Ot
TPOPAEYELS TNG EUTMEPIKNG avdAvoTG dev Exovv TpaypotomomBel pdvo yio pio pépa
UTpootd, ¢ eival To cvvnBeg o AALeC TETO1EG £pEVVEG, OAAG TTeptlapPdver pia ToAv-
TEPLOOIKN TPOPAEYT OPKETEG NUEPEG UTPOCTA. ZvykeKpuEva TepAappdvel emmAéov
10 muépeg upmpootd mpdPAeyn oL KwvduvoLv (Srdotnuo piog efdopadag o€
ypnuatwotnplokés Pdaoetg) wor 20 mpépec umpootd (ddotnuo €vog pnva o€
ypnuatotnplokés Pacelg). To ddotnuo eUmoToovVNG oL EETALETOL GTY TOPOVGA
dimhopartiky givar o 95% kot 99%, AapPdvovtag dedopéva og nuepnota (inter-day)
Kot og gvoonuepnota (intra-day) paon.

H owovouwkn afePardtra kot petofAntéOmmta Tov  OKOVOUIKOD
nepPdAiovtoc vroypoupilelt ™ omovdMOTNTA TNG EVOOUATOONS VE®V EPYUAEI®V
extiunong kot aloAdynong tov Kwovvov. Katd cvvémewn, 1 povtelomoinon tov
Value-at-Risk gival évog topéag g otkovoueTpiag, 0 0moiog TANPoi Tig Tpodmobécelg
TOV EXEVILTOV, Kot YL T0 AOY0 antd €xel peremdet 01e€odkd. Evoag kdplog Adyog
NG EKTETOUEVNG GLTNG HEAETNG eivar M wPdoPOT OKOVOUIKN Kpiorm, M omoia
TLPOSOTNGE TO EVOLOLPEPOV TOAAMDV OVOAVTAOV, KOOMDC Kol TOAADV EMYEPNOE®V
ovTeG wote va mpoPAéyouvv pe peyoivtepn axpifeia tov Kivovvo (VaR) mov
avoroyel oe kdBe YoptoPLAAKIO, OAAE Kol TO 0aKplBEG OGO TNG OVOUEVOUEVIG
anoiewag (ES, Expected Shortfall) tov yaptopviaxiov, otn mpoomddeio. tovg va
EVIOTICOLV TO HOVTELO EKEIVO OV aT0didEL pLeyaAbTEPN aKpifela Kot amodoTIKOTNTO.
[Tapd to yeyovog 6t vdpyel TANOOPO TPOPAENTIKMOV HOVTEA®V, TOPAOEYLATOV Kol
EPOUPUOYADV TTOL YPNOUOTOVVTOL UE OKOTO va mpofAéyovv v petafAntoTnTa
COUO®VO LE TNV LITAPYOVSa PIMOYpapia, 1 TAPOVCH SITAMUATIKY EIGOYAYEL pUio VEL
npocappoyn ektiunong tov Kwovvov VaR, dedopévov 611 mopovoidletor 1
petofAntotnta tov nuepiolwv dedopévov tov poviédov AR(1)-GARCH(1,1)-skT
Kot 1 petaBAntotnTa v evoonuepiolov dedopévov tov povtédov AR(1)-HAR-RV-
SkT. EmumAéov, n mapovco dwtpiPf mpaypatomomdnke pe Pdon Tig cLOTAGELG TNG
Emitponng e Baotheiog yuo v Tponelikn Enonteio.

Avoeopikd pe to amoteléopata g ovdAvong, To povtéro AR(1)-HAR-RV-
SkT, ot mpoomdbeio Tov va Kavel TpOPAeyn TG HETAPANTOTNTOG, dEV PAivETAL VO
BeAtidvel v axkpifela Tov tpoPAéyewv tov VaR yw tig mpoPréyelg o 10-nuépeg
umpootd kol oe 20-nuépeg pumpootd, oto 95% kot 99% JdoTnue EUTIGTOGHVNC.
Eniong, 1o HAR povtélo amodetkvietar 0t dev givan 1660 KatdAAnAo terkd, 6Go
avapévovtav va givat, yio Kafe pio amd Tig Katnyopieg, LETOYDV, EUTOPEVUATOV Kot
SLUVOALYLOTIKOV ooTiidv. Avtifeta, to HAR gival koAvtepo poviého €vavtt Tov
GARCH, yw v mpofreyn povo katd pio muépo Umpootd. Xe Oleg TiG GAAES
neputdocelg 10 GARCH givar avatepo tov HAR.



AéEec-khewdwd: Value-at-Risk, VaR, ES, mpofreyng petofintommrog, mpepnoio
dedopéva, evdonpepnota dedopéva, ToAv-teptodikny mpdPreyn, GARCH, HAR-RV,

LETOYEC, EUTOPEVUOTO, CUVOAANYUOTIKEG 160TieS, axkpifela  mpoPrentikng
KOVOTNTOG.
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Symbols and Operators

t : time index.

y: : the continuously compounded return series.

Let {y}]_o = {log(p:/pP:-1)}1—,, Where p, is the closing price of the trading
day t.

1 : denotes the conditional mean, pu; = ¢o(1 —¢y) + ¢, V1.

& : the innovation process.

z: : the standardized residuals, vector process with zero mean, unit variance
and zero covariance.

F(z;v,0,I) : Multivariate density function of z, and v is the vector of
parameters of density function F(.;.).

I1v¢ : the information set available at t=1.

62 : the Unconditional Variance, V(¢;) = o2

cij: - the dynamic covariance between c;; and cj;.

o:° : the Conditional Variance, V(g|I,_,) = c2(6).

f(.) : the density function of {z,}7_,, g(.), linear or non-linear.

0 : the vector of the unknown parameters.

F(a; 6Y) : the o™ quantile loss of the assumed distribution, given the estimated
parameters 6 at time t.

Meiqpe and o4 - the one-step-ahead conditional forecasts of the mean and
for the standard deviation.

VaR:;flt : the VaR number of the next trading day (one-step-ahead VaR),

given the information set at day t.

EStljflt : the ES number of the next trading day (one-step-ahead ES), given

the information set at day t.

VaRtl;'_’lt : the VaR number of long trading positions, for the next t trading

days (multi-period-ahead forecasts).

E.S'Sr;l’? : the ES number of long trading positions, for the next t trading days
(multi-period-ahead forecasts).

N~B(T,p) : abinomial distribution, with T the out-of-sample observations.

T : the out-of-sample observations.

T : rolling sample of 1000 observations.

T : the total number of the log returns.

P,,1 : the Loss Function of Lopez (equation 23, p.13, dissertation).

h2,, : the realized volatility’ used as the measure of the true, but unobservable
variance at the day t+1. (used in MSE at equation 26, p.14, dissertation).

ngii*) : the DM-statistic, Diebold & Mariano (Xt(,iii*) = L(;; - L(tf:)).

i : the benchmark model of DM-statistic.

i : the competitive model of the DM-statistic.

X355 the SPA test, (X = LY — L8,

! The Realized Volatility is computed by the following equation:

~2 ~2
ht = % fre (100(10g(P(j+1/m).t) - log(P(j/m,t))))
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i : the benchmark model of SPA test.

i” : the competitive models of the SPA test.

o2") : the Integrated Volatility — 1V, a variable which is not observable
(equation 34, p.17, dissertation).

o2 ®") : the Realized Volatility (RV), which is defined as the sum of squared
returns observed over very small time intervals (equation 35, p.17,
dissertation).

02"+ the volatility of inter-day and intra-day trading strategies of the
Heterogeneous Autoregressive Realized Volatility, HAR-RV.

("), (,_, : the volatility of the HAR-RV model for the medium term

trading during the period of one week.

(6*®"), ,,._, : the volatility of the HAR-RV model enclose investment
strategies during the period of one month or even longer time horizons.

Wo, W1, Wo, W3 : the coefficients on the intra-day squared returns of HAR-RV
model, during the previous day.

u,~i.i.d.N(0,1) : the residuals of the HAR-RV model.

z,~ skT (0,1;v, g) : the standardized residuals of the HAR-RV model, with
skewed student-t distribution, zero mean and standardized volatility over the
parameters; v vector explains kurtosis and g vector explains asymmetry.

log /2520&’"’) : the annualized realized volatility of the HAR-RV model.

2
(log f252cr£RV)> /252 : the daily log-returns of the Realized Volatility, as

a dependent variable by the HAR-RV model.

McC _ .
{Zi,l}iz .- random numbers from the skewed Student-t distribution.
MC: denotes the number of draws.



Introduction

Value-at-risk (VaR) and expected shortfall (ES) have become two popular measures
of market risk associated with an asset or portfolio of assets, during the last decade. In
particular, the VaR has been chosen by the Basel Committee on Banking Supervision
as the benchmark of risk measurement for capital requirements. Both the VaR and the
ES have been used by financial institutions as asset and for minimizing risk, and have
been rapidly developed as analytic tools to assess riskiness of trading activities.

One of the most important issues in finance is the choice of one benchmark
volatility model to forecast the risk that an investor faces. After Engle R. F. (1982)
seminal paper, many other researchers have tried to find the most appropriate risk
model that predicts future variability of asset returns by employing various
specifications, based on ARCH specifications. Hence, their results are confusing and
conflicting, because there is no model that is deemed as adequate for all financial
datasets, distributions, sample frequencies and applications. A good starting point to
judge competitive models is the out-of-sample forecasting performance. On the one
hand, many researchers have tried to find the best performing method for different
financial markets and time horizons by using versions of the ARCH model, but there
IS not a clear agreement in the literature on the most adequate volatility specification.
On the other hand, the availability of high frequency datasets rekindled the interest of
academics to forecast risk.

Most of the studies have considered volatility as an unobservable variable and
therefore used a fully specified conditional mean and conditional variance model to
estimate and analyze that latent volatility. Modeling the unobserved conditional
variance was one of the most prolific topics in the financial literature which led to
many ARCH-GARCH developments and stochastic volatility models. An alternative
approach is to construct an observable proxy for the latent volatility by using intra-
day high frequency data. At this thesis, the intra-day data are modeled with the
application of AR(1)-HAR-RV and the inter-day data represented with the AR(1)-
GARCH(1,1), followed by the skewed Student-t distributional assumption both of
them.

It is well-known that most of the empirical works are based on daily returns.
Despite the majority of the studies in the literature, some of the most quintessential
are; Giot & Laurent (2003) who proposed the asymmetric power of ARCH with
skewed Student-t distributed innovations, APARCH-skT model, while Degiannakis
(2004) suggested the fractionally integrated APARCH (FIAPARCH) model and
stated that the FIAPARCH with skewed Student-t distributed innovations produces
the most accurate VaR predictions among three stock indices (CAC40, DAX30 and
FTSE100). Additionally, other researchers, such as Angelidis, Benos & Degiannakis
(2004); et.al., propose different volatility structures to estimate the daily VaR, but yet
again without reaching a consensus and a common conclusion. They argued that the
choice of the best performing model depends on the equity index.

However, by using high frequency data, researchers explore ways to extract
more information that maybe it will enable them to forecast VaR accurately. To be
more precise, Giot & Laurent (2004) compared the APARCH-skT model with an
ARFIMAX specification, in their attempt to capture VaR for stock indices and
exchange rates, as well. They conclude that the use of intra-day dataset did not
improve the performance of the inter-day VaR model, fact that it is analyzed in more
details at this dissertation, exploring not only stocks, as usual, but also with a dataset
of Stocks, Commodities and Exchange Rates, respectively. Another important study
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that strengthens the results of this thesis according to the literature, has to do with
Giot P. (2005) who estimated VaR at intra-day time horizons of 15 and 30 minutes
and proposed that the GARCH model with skewed Student-t distributed innovations
had the best overall performance, and that there were no significant differences
between daily and intra-day VaR models once the intra-day seasonality in the
volatility was taken into account.

All the above findings presented in the previous paragraph enhance the
outcomes of this present dissertation. In the next chapters, we will try to answer the
question if there is an adequate intra-day model for volatility forecasting in a variety
of assets, not only for stocks, that gives accurate estimation. The innovative process of
this paper concerns the time horizon of the forecasts. | have chosen to forecast AR(1)-
GARCH(1,1)-skT and AR(1)-HAR-RV-skT models; the former represented the inter-
day dataset and the latter represented the intra-day dataset, for one-step-ahead, 10-
step-ahead and 20-step-ahead VaR, at 95% and 99% of confidence level. The most
other studies in the literature have already applied empirical examples for one-step-
ahead and ten-step-ahead. As a consequence, the long memory volatility of 20-days-
ahead has not investigated in huge extent, until now with the outcomes of this
research.

To summarize, although there are indications that the extended models
produce the most accurate VaR forecasts, in some cases, a simpler model is preferable
and especially, as the time horizon increases. For 10 and 20-day-ahead VaR forecasts,
GARCH model is superior, instead of the one-day-ahead forecasts that AR(1)-HAR-
RV-skT seems to be preferable, but with little differences from the other model. It
was also found that the use of the intra-day datasets does not add to the forecasting
power of the models.

The structure of this dissertation is as follows: Chapter 1 describes the
literature reviews with examples and applications with a variety of different models,
while Chapter 2 presents the scope of the research. Chapter 3 present at the first part
data description, secondly describes the methodology of the two models (GARCH and
HAR), according to Monte Carlo Simulation of the multi-step-ahead VaR and ES
forecasts, and finally presents the empirical analysis and the results from these two
models, after the backtesting procedure of Kupiec and Christoffersen tests. Chapter 4
concludes the dissertation and provides the final outcomes of this research.
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Chapter 1. Literature Review and Empirical Analysis

1.1) ARCH Volatility Models

This chapter encompasses issues, concerning the main literature of the theory of Risk
Management and forecasting, by using ARCH volatility specifications.
In econometrics, autoregressive conditional heteroskedasticity (ARCH) models are
used to characterize and model observed time series. The primary purpose is to
display a conceptual framework of the most attractive models commonly used
nowadays in many financial applications. A wide variety of proposed ARCH
specifications are observed in some of the following surveys; Engle R. F. (1982);
Bollerslev (1986); Nelson (1991); Bollerslev & Mikkelsen (1996); Degiannakis
(2004); et.al.

As an introduction of the ARCH volatility Models that will be followed, it
would be necessary to be presented the notation of financial time series. Let {y,}I_, =
{log(p,/pe—1)3}F-, refer to the continuously compounded return series, where p; is the
closing price of the trading day t. The return series follows the stochastic process:

Ve = e t &

pe = co(1—cp) + c1ye-q

& = Zt0¢ 1)
zg~iid f[E(z,) = 0,V(z,) = 1;0]

of = gU_1),

where E(y:|I;_;) = u;(0) denotes the conditional mean, given the information
available at t=1, I,_;, {g,}F_, is the innovation process with unconditional variance
V(e) = o2 and conditional variance V (g.|1,_;) = a2(8), f(.) is the density function
of {z,}T_,, g(.) in any of the functional forms presented in the model and 6 is the
vector of the unknown parameters.

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity
Model, ARCH (q) and expressed the conditional variance as a linear function of the
past g squared innovations.

of = ao+ XL, aigl (2)

The parameters should satisfy the following prerequisites:
ap>0anda; =20 fori=1,..,q.

The reason that Engle was led to the innovation of ARCH Model was his attempt to
investigate a model that had the inflation unpredictability as a first priority. He argued
that the level of inflation was not a drawback, but the uncertainty about future cost
and prices was. The uncertainty can be measured if it was changing over time, what
econometricians called Heteroskedasticity; Engle R. F. (2003). Engle earned at 2002 a

Nobel Prize for his innovation, shared with Clive Granger who had developed a test
for bilinear time series models.

Tim Bollerslev (1986) proposed a generalization of ARCH Model, called
Generalized ARCH or GARCH (p,q). The purpose of this new model was to
generalize the simple Autoregressive Heteroskedasticity Model to an Autoregressive
Moving Average Model. The GARCH(p,q) forecasted variance is a weighted average
of three different variance forecasts; firstly, the constant variance which corresponds
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to the long run average, secondly, the forecast that was made in previous period and
finally, the information set that was not available when the previous forecast was
made.

of = oo + XL, el + X7, byor_, 3
where ap > 0 fori=1,..,qandb;=0forj=1,..,p.
If XL+ Z]P:l b; < 1 then the unconditional variance is equal to:

2 — %o

(-3i,a-%, b’
The GARCH(p,q) model has been already used in many econometric analyses in
order to forecast the risk, generating accurate forecasts. Hansen and Lunde (2005)

proposed that there is none else model provide better volatility forecasts than the
GARCH(1,1), comparing among 330 alternative models.

However, the use of GARCH is not always suggested in every occasion. For
that reason, Taylor (1986) and Schwert (1989) introduced the Absolute GARCH
Model or AGARCH(p,q), in which they argued that the conditional standard deviation
is a linear function of its past values, as well as the past absolute innovations.

O = Qo + Z?ﬂ ailst—il + 2]'p=1bjo-t—]' : (4)

In this attempt the large shocks should have a smaller effect on the conditional
variance of the AGARCH model than that of GARCH, respectively.

An alternative in the family of GARCH Models is IGARCH(p,q). The
Integrated GARCH focused on the assumption that XL, a; + X, by ~ 1 , with the

following equation:
of = ag + Z?=1 0‘185—1 + 2&1 b; O_E—j' (5)
where XL g + X7 by = 1.

IGARCH models are unit-root GARCH Models. One significant characteristic of
IGARCH makes the difference between the simple GARCH, concerns the
unconditional variance, which is infinite. As a consequence, the above sentence
indicates that the conditional variance remains important for all conditional volatility
forecasts. Moreover there is a special form of IGARCH, the Exponentially Weighted
Moving Average (EWMA), which is used by Risk Metrics®. The volatility forecast is
computed as o = AoZ_; + (1 — A)eZ_,.The basic RiskMetrics model is equivalent to
a normal IGARCH model where the autoregressive parameter is set at a prespecified
value 2 @ and the coefficient of 2, is equal to 1-A. However, Risk Metrics TM
methodology, used in many studies, has been proved that underestimates the total
risk.

o

Another important generalization of GARCH is the Exponential GARCH or
EGARCH(p,q), introduced by Dan Nelson at 1991, in order to overcome some
weaknesses of the GARCH model. He proposed that volatility could respond
asymmetrically to past forecast errors; Nelson (1991). EGARCH models are
appropriate when positive and negative shocks of equal magnitude might not
contribute equally to volatility. The equation of EGARCH is following:

% The Risk Metrics variance model was first established in 1989, when Mr. Dennis Weatherstone, the
new chairman of J.P. Morgan, asked for a daily report measuring and explaining the risks of his
firm. Nearly four years later in 1992, J.P. Morgan launched the Risk Metrics ™ methodology to
the marketplace.

¥2=0,94.
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logo? = g + Z?=1 (0(1 +vi %) + Zip=1 b; log Gg—]" (6)

In the equation (5), the logarithmic transformation ensures that the forecasts of the
variance are always positive and the parameter y; # 0 depicts the asymmetric effect.
If y; = 0 then a positive surprise (g, > 0)will have the same effect on volatility as a
negative surprise(e; < 0). This is well known as the leverage effect. While when

yi < 0, it means that positive shocks generate less volatility than the negative ones.

Et—i
Ot—i

The Threshold GARCH or TARCH(p,d,q) is one another model out of the
most widely used. This specification allows a response of volatility to news with
different coefficients for good and bad news.

0f = ag + Xt el + Yy €51 deq + Xi_; bjoZ ;. (7
In this case, the dummy variable d, = 1ife;, < 0andd; = 0ifg, > 0.

For the AGARCH specification or Asymmetric GARCH, a negative value of
y; means that positive returns increase volatility less than negative returns.

of = ap + Z?:l(aisf—i + Y1€-1) + 2?:1 bjof; . (8)

The Asymmetric Power ARCH or APARCH (p,q) model comprises most of
the presented models. It was introduced by Ding, et al. (1993), without assuming that
conditional variance should be a linear function of the lagged squared returns.

0? =+ Z?:l o; (lee—il — Yist—i)s + Zip=1 biGtS_i ) (9)
where ay >0, o; =0, |y;1 <1, b; =0 and 6 > 0.

Because the distribution of returns is often not symmetric, parametric VaR models
faced difficulties in modeling correctly the tails of the distribution of returns. As a
result, Giot and Laurent (2003) introduced the APARCH model, based on a different
distribution than that of Normal®. They followed the skewed Student-t Distribution, so
as to take into account the fat tails of the returns. This innovation enabled to measure
the short and long trading positions more easily rather than that of the previous
modeling processes, comparing to another similar empirical analysis; that of Mittnik
and Paolella (2000), in which they used APARCH focused on long VaR only. By
forecasting four daily stock indices; the French CAC40, the German DAX, the US
NASDAQ and the Japanese NIKKEI, Giot and Laurent (2003) brought about
considerable improvements at one-day-ahead VaR both for long and short trading
positions.

Bailie (1996) tried to model long memory property in volatility, using a new
model, which was the extended IGARCH(p,g). This model was called
FIGARCH(p,d,q) and its primary purpose was to develop a more flexible class of
processes, depending on the conditional variance, which gave the opportunity to
explain in a better and more simple way the observed temporal dependencies in
financial market volatility. As a consequence, Bailie introduced the FIGARCH (p,d,q)
process in 1996, by replacing the first difference operator® from the IGARCH model;
(1-L), with the differencing operator (1-L)%; Baillie, Bollerslev & Mikkelsen (1996).

O(L)(1— L)% = ao + (1 — B(L))(e? — ), (10)
which 0 <d <1

* See Appendix A’: Types of Distributions and the Density Functions of them (p.65).
POL)(1 — L)ef = o + (1 - (L)) (¢ — of



By all accounts, the FIGARCH combines many of the features of fractionally
integrated process for the mean, when d = 1. Concurrently, FIGARCH has also a lot
of similarities with the GARCH process for the conditional variance, whend = 0.
Finally, it has been proved that FIGARCH model added flexibility when modeling
long run volatility characteristics, as well as it seems to be more realistic from
economic perspective, dominated by a hyperbolic rate of decay.

In the same year, another innovative model was displayed by Bollerslev and
Mikkelsen (1996); that of Fractionally Integrated EGARCH / FIEGARCH (p,d,q).
This new model was an extension of the previous EGARCH; Bollerslev, Mikkelsen,
et.al. (1996).

€t—1

log(o7) = ao(1 ~ B(L)) + (1 = )™ (1 + @(L)) (1 (|2=*
bet—1ot—1+ ylet—1ot—1+FLlogot2.

(11)

Tse (1998) was the person who developed the Fractionally Integrated
Asymmetric Power ARCH (FIAPARCH) model, which allows for long memory and
asymmetries in volatility.

o =as+(1-B(L)—(1—-2L)(A—L)")(lel —ye)? +
B(L) log(a{g), (12)
where =1 <y <land & > 0. Wheny <0, negative shocks give rise to higher

volatility than positive ones. The opposite happens when y > 0. However the FIAPARCH
process reduces the importance of the FIGARCH process wheny = 0 and d = 2.

1.2) Value at Risk and Expected Shortfall

Risk Management is a standard prerequisite for all financial institutions nowadays.
Numerous methods have been proposed to minimize the forecast error. Value-at-Risk
(VaR) is the main risk management tool, used to compute accurately the risk of each
financial asset. Particularly, VaR refers to a portfolio’s worst outcome that is likely to
occur at a given confidence level, over a specified period and is focused on the market
risk; Angelidis & Degiannakis (2007). Market risk is defined as the risk that arises
from unforeseen movements in market places. There are three methods of calculating
VaR; the first category refers to the major representatives of parametric family, which
are the Autoregressive Conditional Heteroskedasticity (ARCH) models. The second
category, the non-parametric modeling relies on actual prices without assuming any
specific distribution and the main representative of this category is the Historical
Simulation. The last category is the semi-parametric family that combines the two
above frameworks. Filtered Historical Simulation (FHS) and Extreme Value Theory
(EVT) are the representative methods of the third category. As far as the appropriate
methods of model evaluation, there are mainly two; the evaluation of the statistical
properties of VaR forecasts and the construction of a loss function that measures the
distance between the predicted VaR and the actual portfolio’s outcome. In the first
stage, the statistical accuracy of the models is examined. In the second stage, a loss
function is applied in order to investigate whether the differences among the models,
that pass the first stage, are statistically significant. It is also essential that VVaR has
been adopted by bank regulators. Specifically, according to the Basle Committee
proposal (1995a, 1995b), the VaR methodology can be used by a variety of financial
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institutions to calculate capital charges with accordance to their financial risk, let
alone banks could determine their daily capital charge by following the three below
proposals; Angelidis & Degiannakis (2007):
1. The 99% confidence level must be used.
2. The holding period must be set to 10 trading days, in the attempt investors to
be able to liquidate their positions due to price changes.
3. Banks could calculate VaR by implementing internal models.

Proposing a historical review of Value-at-Risk, the first approach of inserting the use
of VaR into practical examples was made by New York Stock Exchange (NYSE) on
1922, by imposing to the members of the firm to hold capital equal to 10% of their
assets. Moreover, many researchers had played an important role on this issue;
Leavens (1945) presented the first quantitative example of VaR, Markowitz and Roy
(1952) suggested VaR measures individually, which were based on the covariances of
risk factors and finally, Baumol (1963) presented a measure focused on standard
deviation adjusted to a confidence level, in which the reflection of user’s attitude to
risk was obvious; Angelidis & Degiannakis (2007). Not to mention of course, a
widespread method of calculating VaR; the Risk Metrics system applied on the
internet and introduced by JP Morgan in 1994.

In this paragraph will be made an attempt the formulation of VaR to be
described by using the following equation:

- var P 4 1
p=Pr (yt < VaR{* p)) =" e (—;y?) dy;. (13)
Where P, be the observed value of the portfolio at time t and the profit (or loss) (P/L)
for period t-1 to t, equals toy, = In(P,) —In(P,_;). The next figure depicts
accurately this relation, under the assumption that y,~N(0,1) and the probability of

the loss will be less than VaRt(l_p) = —1,645, as well as the confidence level® is 95%
(See Figure 1). Having estimated the parameters of the models, the VaR number for
the next trading day (calculating the one-step-ahead VaR), given the information set
at day t, is computed as:

VaRtlJ:fn = Ueqpe + F(a; et)0t+1|t' (14)

where F(a;0%) is the o quantile loss of the assumed distribution, given the
estimated parameters 0 at time t, ;.1 and o, are the conditional forecasts of the
mean and for the standard deviation, respectively.

However, there arose a variety of criticisms about the risk management tool;
VaR. Value-at-Risk (VaR) has become a standard risk measure for financial risk
management due to its conceptual simplicity, ease of computation, and ready
applicability. Nevertheless, VaR has been charged as having several conceptual
problems. First of all, Taleb (1997) and Hoppe (1998) argued that the underlying
statistical assumptions of VaR modeling have been violated, while Beder (1995)
claimed that different risk management techniques generate different VaR forecasts
and as a consequence, the risk estimations should probably be imprecise. Another
criticism concerns the sub-additivity procedure; many econometricians claimed that
VaR is not necessarily sub-additive. This leads to the inference that if risks are not
sub-additive, the sum of them might underestimate the total risk. To be more precise,
the VaR of a portfolio may be greater than the sum of individual VaRs. For that

® For example, if confidence level is 95% means that for a capital of 100.000€, VaR equals to 1.645€.
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reason, there arose a need of introducing another risk measure in order to remedy
these shortcomings; Angelidis & Degiannakis (2007).

Figure 1: For p = Pr (yt < VaREl_”)) = 5%and the VaR" ™ = —1,645 under the assumption that
v.~N(0,1).

= = = ~ - -

Source: Angelidis & Degiannakis (2007), Econometric Modeling of Value-at-Risk, Nova Science
Publishers, p.5/1-53.

Finally, VaR does not give any indication about the size of the potential loss,
given the fact that loss exceeds VaR. For instance, if a VaR violation occurs, a risk
manager expects to lose more than the VaR prediction. In other words, VaR gives
important information about the potential loss, but does not indicate information about
the expected loss. For all these reasons, Artzner, et.al. (1997); (1998) and Delbaen
(2002) introduced the Expected Shortfall (ES) risk measure.

Expected Shortfall (ES) is equal to the expected value of loss, given that a

VaR violation is occurred. Another definition depicts Expected shortfall as the
conditional expectation of loss that takes into account losses beyond the VaR level
(See Figure 2). Expected Shortfall is a reliable measure computing loss, especially
during market turmoil, because VaR seems to be unreliable under market stress and
VaR may underestimate risk, not to mention the fact that is the most attractive
coherent risk measure, which satisfies the following four prerequisites; Artzner, et.al.
(1997):

1. Sub-additivity,

2. Homogeneity,

3. Monotonicity,

4. Risk-free condition.

The one-step-ahead Expected Shortfall (ES) forecast for long trading positions is the
one-day-ahead expected value of the loss, given that the returns t+1 fall below the
corresponding value of the VaR forecast. The above sentence is well described at the
following equation:

ESgl) =E <Yt+1

t+1]t

(Yt+1 = VaRE-ll-;ﬁ) )) (15)
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Figure 2: For y,~N(0,1) and p = Pr (yt < VaREl_p)) = 5%, the VaR" ™ and the ES.* ™.

VaR=-1645

025 1 ES=-2.061
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Source: Angelidis & Degiannakis (2007), Econometric Modeling of Value-at-Risk, Nova Science
Publishers, p.7/1-53.

In order to compare the VaR and ES, a lot of authors have studied about these
two risk measures and proposed different opinions; one of them was that of Yamai’s
and Yoshiba’s (2004). Particularly, they implied that VaR is not such a reliable
measure during market turmoil. They claimed that there were several conceptual
problems with VaR. Among these problems, an important one was that VaR
disregards any loss beyond the VaR level, what we call “tail risk”. And as a
consequence, they showed that the expected shortfall requires a larger sample size
than VaR to provide the same accurate results; Yamai & Yoshiba (2004).

To conclude, both Value-at-Risk and Expected Shortfall are two necessary
measures utilized to minimize the forecast error. However, the Expected Shortfall
(ES) is a little better risk measure, because firstly it informs the risk manager what to
expect whether a VaR violation is occurred; Artzner, et.al. (1997; 1998), secondly ES
could not mislead investors, contrary to VaR; Yamai & Yoshiba (2004) and finally,
ES estimates might be more accurate than the VVaR ones; Mausser, Rosen & et.al.
(2000).
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1.3) Monte Carlo Simulation: The multi period VaR and ES
forecasts

The multi period VaR could be estimated utilizing a variety of different techniques;
among others are the parametric approaches, the non-parametric and the semi-
parametric ones, as they were explained in more details in the previous 1.2 subsection.
Despite all the above well-known forms applying multi period VaR, a new one
distinguishing approach was that of Monte Carlo Simulation. Monte Carlo Simulation
depicts the reliability of quasi maximum likelihood estimation methods and by all
accounts has a competitive advantage, because new empirical evidences have already
shown that the apparent long run dependence, for example of stock index volatility,
will be better described by a reverting mean of fractional integrated process. This is
illustrated by the fact that the future conditional variance of the optimal forecast will
be dissipated at a slow hyperbolic rate, and as a result this means more accurate
forecasts. Consequently, the key innovation of using Monte Carlo Simulation is the
estimation of multiple-step-ahead VaR and ES for the FIGARCH-skT specification,
using a number of steps arising from a new algorithm; Christoffersen P. F. (2003);
Xekalaki & Degiannakis (2010).

To generate the t-step-ahead VaR and ES forecasts for the AR(1)-
FIGARCH(1,d,1)-skT model, Monte Carlo Simulation technique is employed. At the
first step required to be produced leptokurtic and asymmetrically conditionally
distributed log-returns. The second and third steps are used to obtain estimates for
multi period VaR and ES based on the fractional integrated operator. Furthermore, the
out-of-sample observations at those steps are divided into overlapping intervals. The
use of overlapping intervals is quite important to avoid the shortcoming of
autocorrelation in the forecast errors. For more details about the steps of Monte Carlo
Approach, check the following paper: Degiannakis, Dent & Floros (2012). The t-day-
ahead VaR and ES forecast, respectively, for long trading positions is defined as:

VaRtlJ:ﬂt = Uprrpe + F(@;09)0p4r)e (16)
and

t+tT|t

ESO = E (vere

(yeae < VaRg;l’?)). (17)

Innovative was the analysis that Dionne, Duchesne & Pacurar (2009)
presented in their paper, using the Monte Carlo Simulation technique for a different
frequency data set at this time; the intraday data, which will be analyzed in further
detail in a following subsection. Dionne, et.al. (2009) tried to estimate intraday VaR
using tick-by-tick data. The model that was used on that analysis was a log ACD-
ARMA-EGARCH model’, which finally the approach produced reliable estimates of
IVaR (Intraday Value-at-Risk). The strong advantage of this innovative approach has
to do with the greater information content and the greater flexibility of the intraday
time horizon. They proposed an extension of GARCH models for tick-by-tick data;
the ultra-high-frequency (UHF) GARCH model introduced by Engle (2000), to
specify the joint density of the high-frequency returns. The advantage of this model is
that it explicitly accounts for the irregular time-spacing of the data by considering
durations when modeling returns; Dionne, Duchesne & Pacurar (2009); Degiannakis,
Dent & Pacurar (2012).

7 ACD-ARMA-EGARCH model is an Autoregressive Conditional Duration- Autoregressive Moving
Average EGARCH (exponential) model. The ACD model was introduced by Engle and Russell (1998)
to taking into account the irregular spacing of such data.
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1.4) Backtesting Value-at-Risk: The statistical properties of
VaR forecasts (First Stage Evaluation)

It is well-known that Value-at-Risk must neither overestimate nor underestimate the
expected VaR number, because it is obvious that in both cases, the financial
institution allocates the wrong amount of capital. To be more precise, in the former
case of overestimation, risk managers of the firm charge a higher amount of capital
than really needed. Finally, in the latter case of underestimation VaR, managers
charge a lower rate of capital than that of really needed and as a result, their firm
remains uncovered toward the risk; the regulatory capital may not be enough to cover
the market risk, as unfortunately they do not manage to forecast accurately the
increased losses. For all these reasons, there arose the need of using a new risk
management tool. The simplest method to evaluate the accuracy of the risk models is
to record the total number of violations in order to determine the factor k. The smaller
k is, the better the model predicts VaR, but this formula can only be applied at 99%
significant interval and only when the holding period is up to 10 trading days.
Otherwise, there are some alternative statistical techniques of evaluating VaR models,
among others the quintessential one is Kupiec and Christoffersen’s method, called
Backtesting Procedure; Angelidis & Degiannakis (2007).

Having presented a wide variety of different risk management techniques, now
it is time to discuss the statistical evaluation of these forms, and especially the
statistical properties of VaR forecasts. Taken into consideration that VaR is never
observed, not even after a violation is occurred, the first step is to calculate the VaR
values as a number and then classify the risk models through examining the statistical
properties of the forecasts. This approach divided into two stages (See Figure 3). In
the first stage, a model is only considered as adequate under the assumption of no
rejection by both the unconditional and independence hypothesis. The first hypothesis
examines if the average number of violations is statistically equal to the excepted one
and the second hypothesis if these violations are independent. At this subsection, we
focused on the first stage of statistical evaluation, given more information about the
Backtesting Criterion of Kupiec (1995) and Christoffersen (1998); (2003). As far as
the second stage is concerned, it will be analyzed in more details at the following
(1.5) subsection.

Figure 3: The statistical properties of VVaR forecasts: The two stages.

econd Sta
Evaluation -

ES based Loss

Function

First Stage Evaluation -
Unconditional Coverage and
Independence Hypothesis

Pull Set of Candidate Models

Source: Angelidis & Degiannakis (2007), Backtesting VaR models: A two-stage procedure, Journal of
Risk Model Validation, p.10/1-22.
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1.4.1) Unconditional Coverage of Kupiec

The most widespread used test developed by Kupiec (1995), examines the hypothesis
if the exception rate is statistically equal to the expected rate. The null hypothesis
denotes that the model is adequate if the appropriate likelihood ratio statistic is:

LRyc =2 log((l - g)T_N (%)N) —2 log((l - P)T_NPN) ~Xi

where N = ¥1_, I, is the number of days over a period T that a violation occurred
and as a result the portfolio loss was larger than the VaR estimate®, and p is the
expected ratio of violations. Otherwise, the risk model will be rejected if it generates
too many or too few violations; hence, the risk manager accepts a model that
generates dependent exceptions.

. 1-p)

I, = yl» if YVey1 < VaRt+1?t
t+1 — . 1-p)
0) lf yt+1 = VaRH—lft

(18)

(19)

According to (Kupiec, 1995), the number of violations follows a binominal
distribution N~B(T, p). The null hypothesis and the opposite are:

Hy: N/T =p
H,:N/T #p. (20)

The Unconditional Coverage of Kupiec is X* (Chi square) distribution with one
degree of freedom. As we can see in the Table 1 the “no rejection regions” of N differ
into various sample sizes and confidence levels, as well.

Table 1: Unconditional Coverage ‘no rejection’ regions for 95% significance level.

Confidence level Evaluation sample size
250 500 750 1000
5% 7<N<19 17<N<35 27<N<49 38<N<64
1% 1<N<6 2<N<9 3<N<13 5<N<16
0,5% 0<N<4 1<N<6 1<N<s8 2<N<9
0,10% 0<N<l1l O0s<Ns2 0<N<3 O0s<N=<3
0,01% 0<N<0 O0s<N<oO 0<N<l1 O0s<N<1

Source: Angelidis & Degiannakis (2007), Econometric Modeling of Value-at-Risk, Nova Science
Publishers, p.28/1-53.

Lastly, the Unconditional Coverage Test, part of the first stage of statistical evaluation
procedure, has the right to reject a model for both high and low failures. Hence,
Kupiec’s distribution stated as poor enough and as a consequence, this shortcoming
comes to be overcome by the advent of an auxiliary criterion; the Conditional
Coverage Test; Angelidis & Degiannakis (2007; 2007).

® We evaluate the accuracy of risk models for long trading positions. Alternatively, for short trading

positions T,,; = 0ify,,, > VaR® 7P

e and 1 otherwise.
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1.4.2) Conditional Coverage of Christoffersen

Christoffersen (1998) developed a more elaborate criterion that of conditional
coverage test, in which combined the Kupiec’s former criterion. Practically,
Christoffersen examined concurrently, the total number of failures by checking if is
equal to the expected number and the VaR failure process if it is independently
distributed or not. The hypotheses presented on the second backtesting criterion are
defined as:

Ho:N/T=p and 7T01=7T11=p (21)9
HoN/T?‘:p and 7T01¢7T11¢p. (22)
The null hypothesis expresses in the first part that the total number of violations is
equal to the expected p and the second part expresses that the failure process is
independent. The likelihood ratio statistics of the Conditional Test of Christoffersen

(1998) are described in the following two equations; one for the independence and the
other for the conditionality:

LRIN — Z(IOg((l _ n01)n00n61f1(1 _ ”11)”10”?111) _ lOg((l _ no)n00+n10n6101+n11))~X12 (23)
LR¢cc = 2log((1 - P)T_NPN) + 2log((1 - 7T01)n00”(7)l{)1(1 - ”11)“10”?111 ~X12_ (24)
Where N is the number of days that a violation is occurred over a period T and p is

the desired coverage rate. Under this framework, a risk model is rejected if it
generates either too many or too few violations; Christoffersen (1998); (2003).

Taking all the above into account, the main advantage of using the above two
backtesting tests is the fact that the managers could easily reject a VaR model that
generates too many or too few clustered violations. However, their drawback is that
these two backtesting procedures cannot classify the models based only on the p-
values of these tests.

1.5) Loss Functions: The statistical significance of VaR
forecasts (Second Stage Evaluation)

As mentioned at the previous subsection, the statistical accuracy of the VaR forecasts
are proved by the two backtesting tests with the unconditional and conditional
coverage and consequently, if a model is not rejected means that forecasts VaR
accurately. However, it is a common phenomenon more than one model to be
characterized as adequate and as a result, the risk managers will not be able to choose
the most appropriate technique. The weakness of backtesting test to attribute accurate
results at scale of 100%, leads to the excessive need of the second stage of VaR
evaluation. Lopez (1999) proposed a forecast evaluation framework which is focused
on a loss function. Under this new evaluation framework, risk managers are capable
to classify the models and find a utility function that releases their concerns. Loss
functions measure the accuracy of the VaR forecasts on the basis of the distance
between the observed returns and the forecasted VaR values, given that a violation is
occurred; Angelidis & Degiannakis (2007). In other words, the adequacy of the
models is investigated by the construction of a loss function that measures the squared

° where m; = n;;/X;n;; are the corresponding probabilities. And i, j=1 denotes that a violation has
occurred, whereas i, j=0 indicates exactly the opposite.
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distance between actually daily returns and the one-day-ahead VaR forecasts; or the
multi-period VaR forecasts, respectively.

Through the Lopez (1999) approach, a VaR model is penalized when an
exception takes place. So, one model is preferred over another if it yields a lower total
loss value. Particularly, Lopez suggested the following loss function, which accounts

for the magnitude of the tail losses ((VaRHm — yt+1)2):

Wyey = {1 + (VaRt+1|t — yt+1)2 if aviolation is occured (25)
otherwise

The loss function of Lopez (Equation 23) adds a score of one whenever a violation

occurs. The preferable one is the model that minimizes the total loss, ¥ = YT_, ¥,;

Degiannakis (2004); Angelidis & Degiannakis (2007); Lopez (1999).

Despite the useful part of that innovation, Lopez’s (1999) approach faces two
drawbacks that have to be taken into consideration. The first disadvantage argues that
if a model is not checked through the backtesting tests, maybe this model does not
generate any exception and it will be deemed as adequate and superior over all the
other, as ¥;,, = 0, although something like that would be totally wrong. In order to
remedy this shortcoming, Sarma, Thomas & Shah (2003) suggested a two-stage
backtesting procedure. In the first stage, they tested the statistical accuracy of the
models through the well-known conditional and unconditional coverage tests. As a
second step, they proposed the Firm’s Loss Function (FLF) by penalizing failures but
also imposing a penalty reflecting the cost of capital suffered on other days:

2
(vers = VaRZIR) ) if yees <VaRGY

Yerr = Gy e P (26)
—acVaRy, /) if Yer1 2 VaR; ),

where a, is a measure of cost of capital opportunity; Sarma, Thomas & Shah (2003).
By this new technique of Sarma, et.al (2003) is ensured that the models that have not
been rejected in the first stage of evaluation, forecast VaR accurately.

The second drawback of Lopez’s approach (1999) is that the return y,,,
should be better compared with Expected Shortfall rather than VaR, because VaR
does not give any indication about the size of the expected loss, given a violation
occurs for long trading positions. For that reason, Angelidis and Degiannakis at their
paper (2007) proposed a new method to overcome the second shortcoming of Lopez’s
(1999) loss function. They constructed the extended loss function of Lopez with ES
and not with the VaR, which was defined as:

e} (1-p)
l/JH.l — (yt+1 ESt+1|t) ) lf yt+1 < VaRt+1|t ) (27)

0 ) if Vs = VaRP)

t+1|t
Now it arise the query of how the adequate models can be evaluated in the second
stage. All the information to answer this question is in the next subsection 1.5.1 and
1.5.2.

1.5.1) Statistical Accuracy (MSE, HASE, LE)

In order to judge the models and acquire adequate forecasts in the second stage, we
can use three different loss functions to compute the statistical accuracy. The first one
is the Mean Squared Error (MSE), which depicts the squared distance between
observed and predicted values. MSE is one of the most popular measures in
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evaluating forecasting accuracy. Therefore, it is not always such a reliable method,
and especially when volatility is the variable under study, since symmetric loss
functions may be responsible for the high non-linear environment. When something
like that happens, there are other two methods that can be used; the HASE and LE,
which take into consideration the heteroskedastic framework; Angelidis &
Degiannakis (2008).

If we want to measure the statistical accuracy of the models with the loss
function of MSE, we use the following equation:

_ 2
MSE =T Z=1(h?+1 - Utz+1|t) (28)

Where the h%,, is the realized volatility’® used as the measure of the true, but
unobservable variance at the day t+1. The one-day-ahead variance is o/, ,, and T is
the number of the forecasts.

The other two loss functions; Heteroskedasticity-Adjusted Squared Error
(HASE) and Logarithmic Error (LE) are more elaborate loss functions, which they
take into account the heteroskedasticity framework. As a result, HASE and LE are
based on asymmetric loss functions and they presented in the following equations:

2
HASE =T-1¥T_, (1 - Uh;i) , (29)
t+1|t
and
2 2
LE=T1¥T_ log (U’;L) . (30)
t+1|t

Not to mention that HASE was introduced by Bollerslev and Ghysels (1996), as well
as, LE was introduced by Pagan and Schwert (1990).

1.5.2) Statistical Significance (DM, SPA, MCYS)

The statistical significance of the volatility forecasts was investigated by:

1. the Diebold and Mariano (DM) Statistic (1995),
2. the Hansen’s Superior Predictive Ability (SPA) Test (2005), and
3. the Model Confidence Set Statistic (MCS) of Hansen, et.al (2005).

The above three significance statistics are the most frequently used tests in a large
range of studies, with the MCS statistic be one of the most recent methods.

The DM statistic is the t-statistic derived from the regression of X/’ =

L(t? — L(tll) in connection with heteroskedastic and consistent (HAC) standard errors.

Let i be the benchmark model with the lowest loss function value, the L(tlg is the value

of the loss function | at the time t of the benchmark model i. The null hypothesis
designates that the benchmark model i has equal predictive ability with the model i,
for i'=1, ..., M. The alternative hypothesis states that the benchmark model has
superior predictive ability over the competitive model i*; Diebold & Mariano (1995).

‘% The Realized Volatility is computed by the following equation:
52 452 _ 2
hi = —”"‘;52“’ s (100(108(P(j+1/m).t) - log(P(]-/m_t)))) :
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Hansen (2005) introduced the Superior Predictive Ability (SPA) test that is
used to compare the forecasting ability of the one benchmark model against its M
competitor models. The advantage of SPA test is that the comparison of the models
become simultaneously for all the models between the benchmark and all the others
respectively, contrary to the DM statistic that the comparison carries out at one-by-
one models. The hypothesis of the SPA test is:

Ho: E(XM' .. X)) <0
Hy:E(X' X)) >0 (31)
where x5 = 18 — L), the best performing one model is i and all the other

competitive models denoted as i, for i'=1, ..., M. The null hypothesis that the
benchmark model i is not outperformed by the other competitive models is tested with
the following statistic, T

1/2% 5
TSPA — max —2 X0 , (32)
,Var(Ml/ZX_l*)
for i'=1, ..., M, where XT:%Z{zlxtﬁ"'*). The Var(M'/2X..) is calculating

according to the stationary bootstrap of Politis and Romano (1994) methodology, not
to mention that White (2000b) is the source of many of the ideas that underlies the
bootstrap implementation; Hansen P. R. (2005); Angelidis & Degiannakis (2007).

The Model Confidence Set (MCS), introduced by Hansen, et.al (2005), is an
innovative process, due to the fact that the MCS acknowledges the limitations of the
data. Especially, when the set of competing models is quite large then many
applications may not yield a single model that significantly dominates all competitors,
because the data is not sufficiently informative to give an adequate answer to the
question of “which is the best forecasting model”. As a consequence, through the
MCS statistic, it is now possible to reduce the set of models to a smaller set; a model
confidence set that is guaranteed to accommodate the best forecasting model, under a
pre-specified level of confidence. So the best model is unlikely to be replicated for all
criteria. The objective of the model confidence set (MCS) procedure is to determine
the M, that consists of the benchmark models; more than one on this occasion from a
collection of models M. It is proposed a bootstrap implementation of the MCS
procedure that is very convenient when the number of models is large. The bootstrap
implementation is simple to use in practice and avoids the need to estimate a high-
dimensional covariance matrix (White, 2000b). The MCS procedure is based on an
equivalence test, the dy;, and elimination rule, em. The equivalence test is applied to
the set of objects M = My. If 8y is rejected, there is evidence that the models M is not
so good, and as a result the ey is used to eliminate the object with poor sample
performance from M. Finally, the MCS procedure yields p-values for each of their
models. A model with a small MCS p-value makes it unlikely that model i is one of
the best models (is a member of M’); Hansen, Lunde, et.al. (2005). The hypotheses
that are being tested have the following form:

Ho:E(dij,) =0 foralli,jeM
Hy:E(dij,) #0 foralli,jeM. (33)
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1.6) Realized Volatility and Intra-Day Data

Up until now, everything concerns volatility prediction has been analyzed with much
detail. One of the most significant issues in financial environment is the choice of the
appropriate volatility model in order a risk manager to forecast the risk that his clients
face. A lot of researchers have spent many years of study, focused on the inter-day
volatility forecasts. Inter-day trading, or more commonly known as End-of-Day
Trading would be when a position is held overnight or for multiple days. Now it’s
time to present another technique of VVaR forecasting procedure, by using ultra-high-
frequency data. This alternative technique is known as the Intra-day Realized
Volatility Models. Intra-day denotes a situation of buying and selling indexes within
the same market day. The availability of high frequency data rekindled the interest of
many researchers to forecast risk, because the volatility estimates based on intra-day
returns which are more accurate than those of daily ones. This is illustrated by the fact
that the squared daily returns are unbiased, but noisy estimator of volatility; Angelidis
& Degiannakis (2008).

There seems to be many proponents to forecast Value-at-Risk with this new
alternative way. Many researchers use high frequency dataset in their analyses, due to
explore ways to extract more information to enable them to forecast VaR accurately.
The origin of high and ultra high frequency data concept was not such a contemporary
process; Merton (1980) already mentioned it, provided data sampled at a high
frequency level, let alone that the sum of squared realizations can be used to estimate
the variance of an i.i.d"'. Andersen and Bollerslev (1998a) at their paper showed that
daily realized volatility may be constructed simply by summing up intra-day squared
returns. Assuming that a day can be divided in N equal periods and if ri; denotes the
intra-daily return of the i interval of day t, then the daily volatility for day t can be
written as:

2
(2?21 ri,t) = va=1 Ti?t +2 Zliv=1 2?’:141 TitTi—it - (34)

2. .
If the returns have zero mean and are uncorrelated, then (X, 7;,)” is a consistent

and unbiased estimator of the daily variance, o2; Andersen and Bollerslev (1998a).
Because all squared returns on the right side of the (32) equation are observed when

intra-day data are available, then the (Z?’:lri,t)z is called Realized Volatility at daily
returns.

Let log(P(t)) be considered as the instantaneous logarithmic price of a
financial asset follows:
dIn(P(t)) = o(t)dW(t) , (35)
where o(t) is the volatility of the instantaneous returns and W (t) is the standard
Wiener? process. The Integrated Volatility,a>""”, over the time interval (I — 1,1) is
equal to:

1i.i.d: Independent and identically distributed random variables.
2 A standard Wiener process (often called Brownian motion) on the interval [0,T]is a random
variable (W(t)) that depends continuously on t € [0, T] and satisfies the following: W(0) = 0,
0<s<t<T.
W(t) — W(s)~+vt—sN(0,1),
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atz(lv) = ftt_l a?(x)dx . (36)

The Integrated Volatility is a variable which is not observable. As a consequence, the

Integrated Volatility (IV) can be estimated by the Realized Volatility (RV),a7*"

which is defined as the sum of squared returns observed over very small time
intervals.

atz(RV) = ZT=_11(10g(P(j+1/m),t) - IOg(P(j/m),t))Z’ (37)

Where P, consists of the financial asset prices during period t with sampling

frequency m. Lastly, the Realized Volatility converge in probability to the Integrated
Volatility:

plimy, o (27511(10%(1’ Gi+1/myc) — log(P (]'/m).t))z) = o7, (39)

Another approach was that of Marten’s (2002), who proposed accounting the
overnight returns without inserting the noisy effect of daily returns. The equation of
Martens’ approach defined as:

2 152 _ 2
o) = —Uof,(z:w 2751 (100(log Pij1/mye) — 108(P(i/mye)) s (39)

where o, is the open-to-close sample variance. o2, is the close-to-open sample
variance. Moreover, Engle and Sun (2005) suggested another important addendum to
the Realized Volatility Method; they proposed an econometric model for the joint
distribution of tick-by-tick return and duration, taking into account the market
microstructure effects; Engle & Sun (2005); Angelidis & Degiannakis (2007).

Additionally, the contribution of Corsi’s research is depicted as one of the top
quintessential processes. He introduced in his paper; Corsi (2004), the Heterogeneous
Autoregressive for Realized Volatility (HAR-RV) model, which has the following
form:

Gtrz (RV)

= wy + w05 + w, (aBV) + w3 (a®V)) +é& ., (40)

t—5:t—1 t—22:t—-1

The HAR-RV model is an autoregressive structure of the realized volatilities over

different interval sizes. As far as the at(fr) is concerned, it accounts for the volatility
of inter-day and intra-day trading strategies, thus the (a(RV))t_ ..., accounts for

medium term trading, let alone the (a(RV))t_ZZ.t_l enclose investment strategies

during the period of one month or even longer time horizons, as Corsi F. (2004)
applied. The heterogeneity is the reason of the volatility creation, through the different
time spaces. Last but not least, Corsi et.al tried to extend his further model by
implementing a new specification model, that of HAR-GARCH(p,q) model. For
further details, there is an analytical research into the paper of Corsi, Mittnik, et.al
(2005).

where N(0,1) is a normal distribution with zero mean and unit variance. Because the normal
distribution is used, the process is often referred to as Gaussian. For use on a computer, we discredited
the Wiener process with a time-step dt as:dW~vdtN(0,1).

(Source: https://me.ucsb.edu/~moehlis/ APC591/tutorials/tutorial7/node2.html (University of
California, Santa Barbara)).
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Finally, it is of great importance to describe the model used at Realized
Volatility process of intra-day trading strategies. This model is the ARFIMAX(k,I)
Model or else, the Fractionally Integrated ARMAX. The purpose of this model is to
modeling the long memory property of the realized volatility, which accounts for
recent developments in the ultra-high frequency financial modeling:

_1 ~
Ve = C(’) + (1 - C,(L)) Zto_,ht|t—1 (41)
Zi~iid SkT (0'11 U,, g) (42)
E?It—l = exp (IOg E?|t—1 +%05) (43)
(1 - a’(L))(l - L)d’(log he —wo = Wiy —V'di_1Ye-1) = (1 + b’(L))ut (44)
Up~iiq N(O,07) (45)

Generally, the AR(k)-ARFIMAX(p,q) specification accounts for:

1. Non-synchronous trading positions,

2. Fractional Integration of the Intra-day Volatility,

3. Asymmetric and leptokurtic conditional and unconditional distribution of
returns.

Andersen & Bollerslev (1998a), Giot & Laurent (2004) and Angelidis & Degiannakis
(2007).

However, there are others who are opposed to the importance of that
alternative volatility measure. A quintessential example was that of Giot and Laurent
(Giot & Laurent, 2004), in which they compared the APARCH-skT model with an
ARFIMAX specification in an attempt to compute VaR for stock indexes and
exchange rates as well. They supported that the use of intra-day data did not improve
the performance of the inter-day VaR model. Therefore, Giot (2005) continued
estimate the intra-day VaR of 15 and 30 minutes, despite his different point of view.
For another time, he came to a consensus that there were no significant differences
between daily and intra-day VaR models. As a result, he claimed that the use of the
intra-day data does not add something further to the forecasting power of the models.
To summarize, the meaning of this paragraph is to describe that although, there are
indications that the extended models produce the most accurate and valid VaR
forecasts, in some cases, a simpler one may be preferable.

The recent literature on realized volatility and the huge literature on daily
volatility models seem to indicate that a researcher faces a twofold dilemma of what
method to choose when daily volatility is to be modeled. It is not such a simple choice
as it seems. There are weaknesses with either realized volatility or the daily volatility
models. For instance, if someone decides to model daily volatility using daily realized
volatility, then intra-day dataset is needed so that corresponding intra-day returns can
be computed. Furthermore, even today intra-day data remain extremely costly and are
not readily available for all assets. On the contrary, working with daily data is
relatively simple and the data are broadly available. However, if all the above
shortcomings of Realized Volatility method are overcome in some way, then
undoubtedly, the intraday level will be a much better model.
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1.7) Empirical Analyses of Value-at-Risk Theory, using ARCH
Models

Beside all these elaborate information about all the commonly used models in
order to forecasting VaR accurately, there are many empirical analyses, utilizing a
variety of portfolios and market stock indices. Researchers in their attempt to
calculate losses made some innovations and as a consequence, they finally extended
the ideas of their predecessors. The following paragraphs will be presented some of
them. Long memory™® in volatility has been documented across a range of equity
indices; the S&Psq0; Engle R. F. (2003); Bollerslev & Mikkelsen (1996); Angelidis &
Benos and Degiannakis (2004); et.al., the Nikkeizzs; Ding & Granger (1996); Giot &
Laurent (2003); Angelidis, Benos & Degiannakis (2004); et.al., the DAXaso;
Angelidis, Benos; et.al.(2004); Angelidis & Degiannakis (2008); Giot & Laurent
(2003); et.al., the FTSE100; Angelidis, Benos & Degiannakis (2004); et.al., the CACy;
Giot & Laurent (2003); et.al., not to mention the exchange rates of Deutschemark-
U.S.$, Baillie, Bollerslev & Mikkelsen (1996); Ding & Granger (1996); et.al. and
finally, the US$/UK£ exchange rate; Angelidis & Degiannakis (2007); et.al. All these
above are the most commonly used indices and exchange rates, which are inferred in
the literature. There are several studies that investigate the parametric ARCH
procedures. By all accounts, all parametric ARCH models share the same goal;
modeling the conditional variance as a function of past squared returns; Engle R. F.
(2003), et.al.

To begin with the first empirical analysis, in his Nobel lecture, Engle (2003)
illustrated the use of ARCH models for financial applications. He proposed an
extended analysis of S&Psq index at daily levels from 1963 to the end of 2003 (See
Figure 4).

Figure 4: S&Psy_daily returns and returns from January 1963 to November 2003.
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Source: Robert Engle (2003), Risk and Volatility: Econometric Models and Financial Practice, Nobel
Lecture, p.332/326-349.

This analysis provides an information set about how ARCH models are used for risk
management and option pricing. Engle used GARCH(1,1), which gave weights to the

3 The slow decline of the autocorrelations in the volatility series suggests a long memory process, as
Baillie proposed in 1996. The first contribution in this regard was Taylor (1986), who noticed that the
absolute values of stock returns tended to have very slow decaying autocorrelations. Ding, Granger and
Engle (1993) noted the same fact, concerning the daily returns; Baillie R. (1996).
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unconditional variance and the previous day forecasts. The results of GARCH(1,1)
were not enough satisfactory (See Figure 5), since it appeared that the long run
variance had a tiny effect and might not be significant, which is not correct.

Figure 5: GARCH(1,1) volatilities.
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Source: Robert Engle (2003), Risk and Volatility: Econometric Models and Financial Practice, Nobel
Lecture, p.339/326-349.

For that reason, he utilized an asymmetric volatility model; the TARCH model,
considering the CBOE Volatility Index (VIX)'. Finally, the TARCH volatilities
forecasted out to one month, due to VIX method. All in all, the outcome was quite
similar although the TARCH was little lower than the VIX. (See Figure 6)

Figure 6: Implied Volatilities and GARCH volatilities.
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Source: Robert Engle (2003), Risk and Volatility: Econometric Models and Financial Practice, Nobel
Lecture, p.341/326-349.

Another empirical analysis in Angelidis, Benos and Degiannakis
article (2004) implemented three volatility models; GARCH, TARCH and EGARCH,
under three different distributional assumptions; Normal, Student-t and GED™. This
study shows that the more flexible a GARCH model is, the more adequate is in the

! The CBOE Volatility Index (VIX) is a key measure of market expectations of near-term volatility
conveyed by S&Psq stock index option prices in one-month returns. Since its introduction in 1993,
VIX has been considered by many to be the world’s premier barometer of investor sentiment and
market volatility; Chungi, Tsai, Wang & Weng (2011), (Source:
www.choe.com/micro/vix/vixintro.aspx)

15 GED: Generalized Error Distribution.
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volatility forecasting. Moreover, the above three models that have been chosen are
able to capture the most considerable characteristics of financial markets. They used
four historical sample sizes with 500, 1000, 1500 and 2000 observations, in order to
estimate the 95% and 99% one-day-ahead VaR. A restricted sample size could
generate more accurate one-step-ahead VaR forecasts, since it incorporates changes in
trading behavior more effectively. The equity indices portfolios used in this analysis
were the S&Psqo, the NIKKE]Izs, the FTSE 10, the CACy and the DAXs30. The overall
conclusion of this research was that the VVaR estimate was less often rejected at the
95% confidence level. In the assumption of normally distributed returns, the results
were weak, due to the fact that the vast majority of models underestimated the risk at
high confidence level, yielding sufficient p-values for the 95%, but extremely low
ones for the 99%, respectively. As far as the Student-t distribution is concerned, the
GARCH and EGARCH models generate better forecasts rather than TARCH. Hence,
by increasing the confidence level, there arose some more complicated results,
because both symmetric and asymmetric models had been selected as statistical
adequate, which is incorrect. In this occasion, the choice of the sample size has turned
to be one of the most crucial factors. Last but not least, the GED had similar effects as
the Normal distribution for 95% confidence level, but yielded better results for 99%.
To conclude, the combination of leptokurtic distribution and a simple asymmetric
volatility model, such as the EGARCH in this occasion, attributed the best
combination, concerning the five indices of this example.

Ding, Granger and Engle (1993) investigated a long memory property of the
stock market returns series. They found not only that there was substantially higher
correlation between absolute returns than returns themselves, but the transformation
of the absolute return |r,|¢ also has quite high autocorrelation for long lags.
Additionally, in another empirical analysis of the same authors; Ding and Granger
(1996) found that absolute returns and their power transformations were highly
correlated; Ding & Granger (1996). A systematic study of this can also be found in
Taylor’s analysis (1986). In this research, they investigated the autocorrelation
structure of |r;|%¢, where |r,| is the daily S&Psq Sstock market return and (d) is a
positive number.

On the other hand, Angelidis and Degiannakis (2007), in their paper proposed
a two-step backtesting procedure, where in the first step all the rejected models are
discarded by the univariate VaR backtesting procedure and in the second step; a
multivariate superior predictive test is occurred, chosen one model as the benchmark.
Following this procedure of superior predictive test (SPA), the statistical significance
of the volatility forecasts is investigated. Particularly, in the empirical analysis,
Angelidis and Degiannakis (2007) used three financial markets; US stock - the
S&Psgo, the commodity market of Gold and the exchange rate of US ($)/UK (£),
under four distributional assumptions; that of Normal, Student-t, GED and skewed
Student. The sample size of this analysis was from April 4", 1988 through April 5™,
2005. The purpose of this study was to find the best model predicting accurately VaR
for those three financial markets. To be more precise for each financial market, firstly
for the S&Psq index, the FIEGARCH-GED model (for 95% confidence level and for
long trading position) was the most accurate one. Secondly, for Gold commodity
range, five models generated accurate predictions for both confidence levels and both
trading positions; GARCH-GED, IGARCH-GED, FIAGARCH-GED, FIAGARCHC-
GED and FIAPARCHC-GED. Furthermore, for the US ($)/UK (£) exchange rate, the
choice is not such straightforward. For long (short) trading positions at 99%
confidence level, the best overall distribution seems to be the GED (Normal), whereas
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for the other cases the results are mixed. Hence, the model which appears to have the
best overall performance was EGARCH-N. After the SPA test, the results were
displayed in the following table. (See Table 2)

Table 2: The proposed models that forecast accurately VaR and ES for each dataset, after the SPA test.

Market Model
S&P500 FIEGARCH-N
Gold bullion US$ per Troy ounce GARCH-GED/IGARCH-GED
US$/UKE EGARCH-N

Source: Angelidis and Degiannakis (2007), Backtesting VaR models: A two-stage procedure, Journal
of Risk Model Validation p.19/1-22.

In an attempt to illustrate the innovative approach of Monte Carlo
Simulation, Degiannakis S., Dent P. and Floros C. (2012) presented in their paper an
empirical application of forecasting one-step-ahead, 10-step and 20-step-ahead VaR
and ES, modeling volatility for 10 of the most worldwide known stock indices. The
data period was from January, 12 of 1989 until February, 12 of 2009. VaR and ES are
calculated for 95% and 99% confidence level, by considering long memory within the
conditional variance process and skewed Student-t distributed innovations. In this
paper not only be analyzed the leptokurtosis, but also the asymmetry of the portfolio
returns was investigated. The main purpose and contribution of this paper was to
propose a new adaptation of the Monte Carlo Simulation technique of Christoffersen
(2003) in order to forecasting multiple-step-ahead VaR and ES, respectively.
Particularly, the models used by the authors were FIGARCH-skT and GARCH-skT.
According to the conditional coverage test, the results are turned over to the
FIGARCH-skT model, as it produced an adequate forecasting performance for the
most out of the 10 indices tested. Additionally, the MSE results of the ES figures have
shown that the FIGARCH-skT model is generally lower than those of GARCH-skT,
especially when the forecasting margin increases. The SPA test led to the inference
that the null hypothesis of the superiority of the optimal model (FIGARCH-skT) was
not rejected. To conclude, the fractional integrated model seems to outperform the
simple GARCH both for 95% and 99% confidence level, for the 10-day-ahead and for
the 20-day-ahead time horizon. As far as the one-day-ahead time horizon is
concerned, the long memory structured model did not perform better results rather
than those of short memory.

According to the empirical analysis of another paper of Degiannakis (2004),
the ability of volatility models, under the ARCH framework, was investigated to
produce accurate forecasts of one-day-ahead realized intra-day volatility and one-day-
ahead VaR, using five-minute linearly interpolated prices. In order to investigate the
predictability of the models, firstly, he used two statistical criteria to measure the
distance between the predicted and realized intra-day volatility and secondly, he
computed the VaR and investigated which model can predict the next-day’s financial
loss in the most accurate way. To evaluate the ability of the models in forecasting
one-step-ahead intra-day volatility, he used the Heteroskedasticity-Adjusted Squared
Error (HASE) and the Logarithmic Error (LE) loss functions. As we can see in the
Table 3, in which presents the values of HASE and LE loss functions, the
FIAPARCH(1,1)-skT model either yields the lowest value of the loss functions or
produces volatility forecasts whose predictive accuracy is not statistically significant
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to the forecasts of the model with the lowest value of the loss function. Only, in the
case of the FTSEio and the LE loss function, the FIAPARCH(1,1)-skT model is
statistically significant to the FIAPARCH(1,1)-N model, which yields the lowest
value of the LE loss function.

Table 3: Presents the HASE and LE loss functions and the relative Diebold & Mariano Statistics.

CAD DAX FTSE
MODEL HASE LOSS DM HASE DM HASE LOSS DM
FUNCTION  sTATISTIC| 1OSS  sTATISTIC | FUNCTION STATISTIC
EUNCTION
GARCH(l,l)-N 9,045655 -2,52774 0,485761 -1,94042 0,488443 -1,58756
|GARCH(1,1)-N 7,970780 -2,21427 0,447328 - 0,479234 -1,14582
APARCH(l,l)-N 7,349019 -2,47113 0,474691 -0,57499 0,454476 -0,64122
F|APARCH(1,1)—N 6,341504 -1,51987 0,464788 -0,49778 0,445565 -
FIAPARCH(L,1)-skT 6,252786 - 0452104  -0,11375 0453901  -1,44746
MODEL HASE LOSS DM ':ggg DM HASE LOSS DM
FUNCTION STATISTIC STATISTIC | FUNCTION STATISTIC
FUNCTION
GARCH(l,l)-N 0,762832 -5,67353 1,473186 -7,59009 1,207131 -5,60130
IGARCH(L,1)-N 0,891378 871770 | 1570528  -10,1103 1213684  -553343
APARCH(L,1)-N 0,704857 ; 1292694  -6,26598 1139915  -3,81473
FIAPARCH(L,1)-N 0,724752 20289 | 1456512  -7.11328 1,062456 -
F|APARCH(1,1)-SkT 0,719542 -1,26751 1,136389 - 1,079832 -2,71098
*Bold Font: Statistically significant at 5%
*Bold Italics Font: Statistically significant at 1%

Source: Degiannakis (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model, p.17/1-
24,

The statistical significance of the volatility forecasts was investigated using the
Diebold & Mariano statistic; Diebold & Mariano (1995); Degiannakis (2004). The
stock indexes® used on this analysis are three; CAC4o, DAX3o and FTSE;go and the
forecasting period started from July 10", 1989 to June 30", 2003. Table 4 presents the
adequacy of the models, by the construction of a loss function that measure the
squared distance between actual daily returns and one-step-ahead VaR.

16 See Appendix B: Figure 23 that presents the CAC40, DAX30 and FTSE100 stock index daily
returns in the period from July 10th, 1987 to June 30th, 2003 (p.66). And also see Appendix C: Figure
24 that presents the CAC40, DAX30 and FTSE100 stock index for the realized intra-day volatility and
the relative one-day-ahead forecasts of FIAPARCH(1,1)-skT (p.67).
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Table 4: Presents the LE loss functions measuring the squared distance between the actual daily returns
and the one-day ahead VaR forecasts and the relative DM Statistics, with a=% and a=.% confidence
interval, respectively.

o=5%
Long Positions
CAD40 DAX30 FTSE100
MODEL HASE LOSS DM  |HASE LOSS DM HASE LOSS DM
FUNCTION STATISTIC | FUNCTION STATISTIC | FUNCTION STATISTIC
GARCH(1,1)-N 0,065551 -3,89179 0,087170 -4,007482 0,041990 -3,816774
IGARCH(1,1)-N 0,055388 -2,47118 0,066870 -2,338562 0,037960 -3,222050
APARCH(1,1)-N 0,065596 -5,40206 0,087871 -4,897153 0,037681 -4,473745
FIAPARCH(1,1)-N 0,063253 -5,97315 0,086078 -4,510446 0,037282 -5,822649
FIAPARCH(1,1)-skT 0,042675 - 0,053523 - 0,023751
Short Positions
CAD40 DAX30 FTSE100
MODEL HASE LOSS DM HASE LOSS DM HASE LOSS DM
FUNCTION STATISTIC | FUNCTION STATISTIC | FUNCTION STATISTIC
GARCH(1,1)-N 0,044903 -3,85406 0,038727 -3,288739 0,017074 -2,740793
IGARCH(1,1)-N 0,035263 -1,74338 0,029910 -0,837396 0,014234 -1,132025
APARCH(1,1)-N 0,041037 -4,98423 0,037286 -4,913541 0,014402 -2,031883
FIAPARCH(1,1)-N 0,040013 -5,04504 0,037238 -3,385501 0,015622 -4,657467
FIAPARCH(1,1)-skT 0,029958 - 0,027336 - 0,012470
o=1%
Long Positions
CAD40 DAX30 FTSE100
MODEL HASE LOSS DM HASE LOSS DM HASE LOSS DM
FUNCTION STATISTIC | FUNCTION STATISTIC | FUNCTION STATISTIC
GARCH(1,1)-N 0,018611 -2,07918 0,026076 -2,071137 0,011895 -2,148599
IGARCH(1,1)-N 0,016305 -1,81311 0,017439 -1,813110 0,010593 -1,930740
APARCH(1,1)-N 0,017799 -2,70251 0,027427 -2,480588 0,009448 -2,334256
FIAPARCH(1,1)-N 0,015945 -2,72616 0,025671 -2,344866 0,008977 -2,815065
FIAPARCH(1,1)-skT 0,007119 - 0,009478 - 0,003468
Short Positions
CAD40 DAX30 FTSE100
MODEL HASE LOSS DM  |HASE LOSS DM HASE LOSS DM
FUNCTION STATISTIC | FUNCTION STATISTIC | FUNCTION STATISTIC
GARCH(1,1)-N 0,006970 -2,42590 0,007536 -2,356176 0,002387 -1,785638
IGARCH(1,1)-N 0,003923 -1,68471 0,005083 -1,723925 0,001786 -1,142707
APARCH(1,1)-N 0,006059 -2,63054 0,007156 -2,655640 0,001846 -1,735150
FIAPARCH(1,1)-N 0,005716 -2,69535 0,009186 -2,425682 0,002126 -2,891783
FIAPARCH(1,1)-skT 0,002142 - 0,003344 - 0,001103

*Bold Font: Statistically significant at 5%
*Bold Italics Font: Statistically significant at 1%
Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.18/1-24.

Under a more careful study of table 4, the accuracy of the FIAPARCH(1,1)-skT
model’s VaR predictions is statistically superior in the majority of the cases. To reach
a conclusion, the empirical analysis of Degiannakis (2004) have shown that the
extended ARCH model; FIAPARCH(1,1)-skT, generates the most accurate volatility
forecasts in the majority of the cases. As a result, this study led to the inference that
flexible models produce accurate volatility forecasts; Giot & Laurent (2003).
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To take all the above empirical analyses into consideration and in an attempt
to collect as much information as it is possible about the ARCH models and their
performance, we lead to the inference that there are some weaknesses through the
variety of empirical analyses focused on. First of all, the ARCH models assume that
positive and negative shocks have the same effects on volatility because they depend
on the square of the previous shocks. In practice, it is an undeniable fact that the price
of a financial asset responds differently to positive and negative shocks, respectively.
As a result the above thesis is not much reliable. Another drawback concerns the
source of variations of financial time series, in which the ARCH models do not
provide any current insight in order to understanding these sources. Finally, ARCH
models are likely to overpredict the volatility due to the fact that they respond slowly
to large isolated shocks to the return series; Tsay (2005) .
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Chapter 2: Scope of the Research

Indisputably, the Value-at-Risk is a field of financial econometrics that has been
studied thoroughly. One main reason of this extensive research is the resent financial
crisis, which intrigue the interest of risk managers, let alone of financial institutions,
in order to provide more reliable Value-at-Risk (VaR) and Expected Shortfall (ES)
forecasts. All they want to do is to minimize the losses amount of their capitals. They
utilize a huge number of models, as there is a majority of existing models in the
literature, in their attempt to find the benchmark one having accuracy and efficiency.
Although there is a plethora of forecasting models, the financial institutions have to
abide by the recommendations of the Basel Committee of Banking Supervision’.

An enormous variety of VaR models have been tested in the literature
including both parametric and non-parametric models. The results have not been
entirely consistent, often suggesting that the optimum choice of model, as well as the
distributional assumptions, may depend upon a number of factors including the
market for which the model is being estimated, the length and the frequency of the
data series, and whether or not the VaR relates to short or long trading positions;
Angelidis, et.al. (2004); Shao, et.al. (2009). For all these reasons, this dissertation has
been done to clarify any doubt concerning the appropriateness and accuracy of a
model to be chosen, among stock indices, commodities and exchange rates.

The method that my dissertation follows is the use of AR(1)-GARCH(1,1)
model, representing the short memory trading positions, compared with that of intra-
day high frequency data using the Heterogeneous Autoregressive Realized Volatility,
AR(1)-HAR-RV model. Surprisingly the fact that it does not formally belong to the
class of long memory models; the HAR-RV model is able to reproduce the same
memory persistence observed in volatility. The distribution of the GARCH(1,1) is the
skewed Student-t (skT) and respectively, the AR(1)-HAR-RV has been estimated
under the skewed Student-t distribution as well. Concerning the frequency of these
forecasts, | have used one-day-ahead, 10-day-ahead and 20-day-ahead VaR and ES
forecasts for the GARCH(1,1) model. In addition to the previous parameterization,
AR(1)-HAR-RV has been forecasted into daily basis estimation, after its logarithmic
modification from annualized realized volatility to daily realized volatility. Afterward
this transformation, the frequency of the data used for HAR-RV model is again one-
step-ahead, 10-step-ahead and 20-step-ahead forecasts estimates.

To support the choice of GARCH(1,1) and in accordance to the literature, the
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model has
been shown to produce reasonable low and high frequency VaR forecasts across a
variety of markets and under different distributional assumptions. Some of the studies
concluded that the use of a skewed instead of a symmetrical distribution for the
standardized residuals produces superior VaR forecasts. On the other hand, Angelidis
& Degiannakis (2007) conclude that the student-t and the skewed Student-t
overestimate the true VaR and as a consequence, they implied that other distributions
such as the Normal may be more appropriate for the standardized residuals.

Last but not least, it is an undeniable fact that a single return only offers a
weak signal about the current level of volatility. To be more precise, the GARCH
models are poorly suited for situations where volatility changes rapidly to a new level,

7 Basel Il VaR quantitative requirements include: a) daily-basis estimation, b) confidence level set of
99%, c) one year minimum sample extension with quarterly or more frequent updates, d) no specific
models prescribed, for instance, banks are free to adopt their own schemes, e) regular backtesting
testing programme for validation purposes. (Basel Committee on Banking Supervision, 2009)
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due to a GARCH model is slow at ‘catching up’ and it will take many periods for the
conditional variance to reach its new level, as discussed in Andersen, Bollerslev, et.al.
(2003). For this reason, high-frequency financial data are now widely available by
introducing a number of realized measures of volatility; Hansen, Huang, et.al. (2011).
As a consequence, interested enough is the analysis of the Heterogeneous
Autoregressive Realized Volatility, HAR-RV model.

The Heterogeneous Autoregressive Realized Volatility, AR(1)-HAR-RV
model encompasses many advantages. First of all, the model retains a structure that
enables to the realized volatility estimates to be aggregated at different scales in order
to have realized volatility measures of the integrated volatility over different periods:
daily, weekly and monthly.  This is a strong advantage and the reason is so simple to
explain. Typically a financial market is composed by participants having a large
spectrum of dealing frequency. On the one side of the dealing spectrum, there are
dealers, market makers and intraday speculator, with very high intraday frequency.
On the other side, there are central banks, commercial organization and, for example,
pension fund investors with their currency hedging. Each such participant has
different reaction times to news, related to his time horizon and characteristic dealing
frequency. The basic idea is that agents with different time horizons perceive, react
and cause different types of volatility components. Simplifying a bit, the model of
HAR-RV can easily identify three primary volatility components: the short-term with
daily or higher dealing frequency, the medium-term typically made of portfolio
manager who rebalance their positions weekly, and the long-term with a characteristic
time of one or more months (Corsi F. , 2002). Finally, it is a surprise that although the
HAR-RV model does not formally belong to the class of long memory models, it is
able to reproduce the same memory persistence observed in volatility as well as many
of the other main stylized facts of financial data. For all these reasons, I chose the
Heterogeneous Autoregressive Realized Volatility, AR(1)-HAR-RV model, as the
second more attractive in order to lead to a conclusion after the comparison with the
GARCH(1,1).

To conclude, the aim of this analysis that will be followed in the below
chapter is to provide in further detail empirical evidence favoring or not the Realized
Volatility of HAR-RV model within high frequency data. In other words, the purpose
of this research is to be determined whether the short memory GARCH model is
outperformed for forecasting not only at daily basis estimation, but also at multi-
period VaR for longer time horizons, such as 10-day and 20-day ahead forecasts, let
alone to be investigated the superiority one of these two models.
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Chapter 3: Empirical Analysis and Results
3.1) Data Description

In the empirical analysis of this dissertation, | used three types of financial asset
classes; these three types are stock indices, commodities and foreign exchange rates.
In order to examine the robustness of the forecasts of the selected volatility models,
the VaR and ES forecasts are generated using daily logarithmic returns data from 3
stock indices, 3 commodities and finally, 3 exchange rates. The 3 stock indices are the
Standard and Poors 500 from USA (S&Psq) with 3901 observations, the Europe
Stock 50 (EurostoXXso) with 3949 observations and the Financial Times Stock
Exchange 100 from London stock market (FTSEiq) with 3912 observations. The 3
commodities are the Copper Commodity of High Quality (HG) with 3897
observations, the Silver Commaodity (SV) with 3897 observations, as well as the Gold
Commodity (GC) with again 3897 observations. The 3 foreign exchange rates are the
Euro Exchange Rate (EC) based on USA Dollar (EUR/USD) with 3898 observations,
the British Pound Exchange Rate (BC) based on USA Dollar (GBP/USD) with 3899
observations and finally, the Canadian Dollar Exchange Rate (CD) based on USA
Dollar (CAD/USD) with 3899 observations.

Concerning the stock indices, the sample used for this dissertation considers
data from major world stock market indices with the longest continuous history. For
example, the Standard and Poor’s 500, S&Psqo, is an American stock market index
based on the market capitalizations of the 500 largest companies. The S&Psq, index
components and their weightings are determined by the S&P Dow Jones Indices. It is
one of the most commonly followed equity indices, and many consider it one of the
best representations of the U.S. stock market, and a bellwether for the U.S. The
Financial Times Stock Exchange Index, also called the FTSE 100 Index is a share
index of the 100 largest companies listed on the London Stock Exchange with the
highest market capitalization. It is seen as a gauge of prosperity for businesses
regulated by UK company law. The EurostoXXsg is a stock index of Eurozone stocks
designed by STOXX, an index provider owned by Deutsche Borse Group and SIX
Group. It is made up of fifty of the largest and most liquid stocks. The index futures
and options on the EurostoXXs, are among the most liquid products in Europe and the
world. Moreover, the Copper, Gold and Silver are the most publicly quoted metal
commodities. Particularly, gold commodity also tends to act as a safe-haven
investment in times of volatility and uncertainty™®.

The data from the nine asset prices cover a range of fifteen years, during the
period from 3" of January, 2000 to 5" of August, 2015 and were conditioned to
remove any non-trading days. To avoid outliers that would result from half trading
days and diminish the problem of seasonality, | removed days that stock markets were
not active for more than six and a half hours between 9:30 a.m. and 4:00 p.m.
Furthermore, inactive trading days were excluded when stock markets were closed the
whole day, such as weekends and public or local holidays; for instance the day after
Thanksgiving and days around Christmas.

Albeit the number of the total log-returns (T) of each of the 9 stock indices,
commodities and exchange rates of dollar, I utilized in my research the formulation of

18 See Appendix D: The closing values of indicators; S&P500 and Gold Commodity through the years

(p-69).
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an out-of-sample log-returns (T), based on a rolling sample'® (T) of 1000
observations. A total of T = T — T out-of-sample forecasts were produced for each
model, with the parameters of the models re-estimated each trading day. Moreover,
the approach used in order to divide the out-of-sample estimation period was the non-
overlapping intervals. The out-of-sample observations for each index, commodity or
exchange rate, T, are divided into T/t non-overlapping intervals of observations, with
T observations in each interval. By using different sample periods, we were able to
investigate whether the risk management techniques are robust across various time
periods and specifically, select a model that is not affected by the chosen sample
period. Furthermore, this procedure ensures that the observations of each sample
would not repeat and consequently, is necessary to avoid autocorrelation in the
forecast errors. Due to the use of non-overlapping intervals, as the forecasting time
horizon increases, the number of VaR and ES forecasts produced decreases by a
factor equal to the length of the forecast period. As a result, particularly for the 20-
step-ahead time horizon, the results of the Kupiec and Christoffersen tests are highly
sensitive to the number of VaR violations such that a very small number of additional
violations can be pivotal in determining whether or not the forecasting performance of
the model is deemed to be adequate; Degiannakis, et.al. (2013).

Descriptive statistics for the daily log returns for the selected indices,
commodities and exchange rates are presented in the Table 5. The mean is not
significantly different from zero and would not make any difference to the outcome.
From the elements of the table, all of the returns distributions are leptokurtic, due to
the fact that the Kurtosis is a large positive value for all the nine asset prices. This
high peak and corresponding fat tails means the distribution is more clustered around
the mean than in a mesokurtic or platykurtic distribution, and will have a relatively
smaller standard deviation (See Figure 7).

Table 5: Descriptive Statistics for the daily log returns.
Table 5: Descriptive Statistics

Index Obs. | Mean | Median | Std. dev | Skewness [ Kurtosis [ Jarque-Bera | Probability
Stock Indices
S&P500 3901 0,021517 | 0,078196 | 1,238977 | -0,049957 | 17,79049 26443,65 0,000000
EurostocXX50 3949 0,010520 | 0,065985 | 1537287 [ -0,094972 | 10,26722 6493,768 0,000000
FTSE100 3912 0,013624 | 0,059112 | 1,299864 [ -0,125363 | 16,04128 20643,38 0,000000
Commodities
HG (Copper COMEX) 3897 0,025732 | 0,04955 | 1958289 [ -0,191981 | 6,414826 1425,380 0,000000
SV (Silver COMEX) 3897 0,028808 | 0,151172 | 2,221797 | -1,041196 | 9,544504 5693,436 0,000000
GC (Gold COMEX) 3897 0,033317 | 0,045465 | 1,237483 | -0,359605 | 8,295233 3447,038 0,000000
Foreign Exchange Rates
EUR/USD (EC) 3898 -0,005012 | 0,007898 | 0,643137 [ -0,022133 | 4,655992 331,3706 0,000000
GBP/USD (BP) 3899 -0,005398 | 0,000000 [ 0,60121 [ -0,594169 | 7,621704 2750,703 0,000000
CAD/USD (CD) 3899 -0,000644 | 0,010132 | 0,633168 | -0,146147 | 5,666509 869,1815 0,000000

*The last column of Table 5 presents the p-values of the Jarque-Bera test which has as its null hypothesis that the
returns series follow a Gaussian distribution.

Moreover, all the indices, commodities and foreign exchange rates of dollar
are negatively skewed, as we can see in the Table 5 at the Skewness column. Negative

9 A rolling forecasts is an add/drop process for predicting the future over a set period of time. It is
well-known as FIFO (First In — First Out) method of forecasting. Rolling forecasts are often used in
long-term weather predictions, project managements, supply chain management and financial planning.
If for example an organization needs to anticipate operating expenses a year in advance, the rolling
period would be 12 months. After the 1% month had passed, that month would be dropped from the
beginning of the forecast and another month would be added to the end of the forecast.

33



skewness means that the data points are skewed to the left of the data average. The
Jarque-Bera results indicate that none of the log-returns follow a Gaussian
distribution, as it is shown in both Table 5 and Figure 7, in which Figure 7 concerns a
random representation of the histograms for six out of the nine assets of this analysis.
This is illustrated by the fact that the p-values are all zero and as a consequence, this
means that the null hypotheses in which the return series follow a Gaussian
distribution are rejected for all the asset prices. As far as the autocorrelation is
concerned, examining the correlograms for the indices, commodities and exchange
rates of dollar, 1 led to the inference that there is first degree autocorrelation and
particularly, negative autocorrelation. The existence of correlation indicates a
relationship between two variables in which one variable increases as the other
decreases, and vice versa. Hence, the negative correlation means that the relationship
that appears to exist between two variables is negative 100% of the time and it is sited
at the left axis. Correlograms for the absolute log returns of the 9 asset prices are
available upon request from the author.
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Figure 7: Histograms of random 6 out of 9 asset prices, indicate the leptokurtic distribution.
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In Figure 7, | used indicatively six out of 9 asset prices, in order to present the leptokurtic distribution.

The forecasts for the GARCH(1,1)-skT and AR(1)-HAR-RV-skT have been
estimated into the 95% confidence level (a=5%) and as the Basel Committee
indicates, into the 99% confidence level (0=1%), as well. All the available data
analyzed in the previous paragraphs are presented to the following figures. These
figures introduce the daily log returns for each one of the 9 stocks, commodities and
exchange rates.

Figure 8: Daily log returns of the S&Psq Figure 9: Daily log returns of the EurostoXXsg
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Figure 10: Daily log returns of the FTSEq Figure 11: Daily log returns of HG Commodity
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Figure 12: Daily log returns of the GC-Gold Figure 13: Daily log returns of the SV-Silver
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Figure 14: Daily log returns of the EUR/USD Figure 15: Daily log returns of the GBP/USD
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Figure 16: Daily log returns of the CAD/USD
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The above figures; from Figure 8 to 16, show the graphs of the series for each
one of the nine asset prices. It is clear that in almost all the graphs, there are the same
periods of intense volatility clustering. The first cluster of volatility encompasses the
observations approximately from 1000 to 1500 observations’ period. These
observations in accordance to the data set of the analysis fluctuate during the year of
2004. However, another essential but less intense cluster of volatility was that of the
years around 2001 to 2002, in which terrorists attacked the World Trade Center in
New York and as a result, several financial markets in the United States remained
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closed at least for a week. Last but not least, another intrigued cluster of volatility
concerns the period around 2008 and 2009. These years reflect to the known credit
crunch of 2008 and are the observations between 1900 and 2100, at the Figures 8 to
16. Despite all the above, thus the graphs are oscillating around zero, indicating that
the series have a constant mean.

3.2) Methodology of AR(1)-GARCH(1,1)-skT model

The empirical success of the Generalized Autoregressive Heteroskedasticity
(GARCH) framework, by Engle R. F. (1982) and Bollerslev T. (1986), has been
widely spotlighted by many researchers in order to model high-frequency volatility
and calculate VaR and ES to select the optimal GARCH specification. Literature
provides evidence that among the simple models, the GARCH(1,1) is the most
adequate one. As a result, in this section will be described all the methodology used in
order to build the model of GARCH(1,1), followed by the skewed Student-t
distribution, not only forecasting the one-day-ahead 95% and 99% of Value-at-Risk
(VaR) and Expected Shortfall (ES), but also forecasting the ten-day-ahead and 20-
day-ahead VaR and ES, as the Basel Committee mandatorily suggests®. All the
estimations have been done in this dissertation took part for 9 major worldwide assets;
3 stock indices, 3 commodities and 3 exchange rates of dollar, as they analytically
described in the previous subsection; that of data description.

The equations used to calculate the one-day-ahead VaR and ES were
presented in the first chapter of this dissertation (see eg.14 and eg.15 at pages 10-11)
and respectively, the equations used for the multi-period forecasts of 10-step-ahead
and 20-step ahead were presented at eq.16 for VaR and at eq.17 for ES (see at page
13). It is also important to illustrate that in order to build the multi-period
GARCH(1,1) model, I utilized the new adaptation of the Monte Carlo simulation
technique, that firstly introduced by Christoffersen P. F. (2003).

Consequently, in order to calculate multiple VaR and ES for AR(1)-
GARCH(1,1)-skT model, I have used a number of steps arising from a new algorithm,
as Christoffersen P. F. (1998) had done in his paper and as well as Xekalaki &
Degiannakis (2010), presented the Monte Carlo simulation. Furthermore, it is
essential to add, at this point, the information that | utilized in my analysis and the
density function®* proposed by Fernandez and Steel (1998)%*:

Ve=M+e=co(l—cy))+c1yeq1 t& (46)
&t = OtZt

0f = ag+ aef 1 + biof,

z.~iid skT(0,1;v, g)

2 Financial institutions are required by the Basel Committee to calculate the VaR of their positions for
at least a 10-day holding period so as to calculate their minimum capital risk requirements (Basel
Committee on Banking Supervision, 2009).
21 See Appendix A, eq. 107 (for the skewed Student-t distribution), p.65.
22 Note that AR(1) is presented as y, = ¢, + e, e; = c1e,_1 + &, thus (v, — ¢;) = ¢;(Ye_q — o) +
&.
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e _1f(g(szt +m);v) if z, < ——

f(SkT)(Zt; 9, v) = 2s szg+m
g+g‘1f( g V)
where g and v are the asymmetry and tail parameters of the distribution, m =

rl(v-1/21J=2)[rw/2)Va] (g — g™ and s2 = (g% + g2 — 1) — m? and
asaresult, s = /g2 + g2 —m? — 1.

Based on Xekalaki & Degiannakis (2010) and Christoffersen P. F. (2003), a Monte
Carlo simulation algorithm for computing VaR?>” and ES{>” based on Generalized
Autoregressive Heteroskedasticity (GARCH) model is presented. Consider the
AR(1)-GARCH(1,1)-skT  with the above framework (46) and finally
z,~skT(0,1,g,v) and y,~skT(u,, 0%, g,v), the 1-day-ahead 95% VaR and ES are
obtained as following:

lfztz——

S

One — day — ahead

Step 1: It is required to produce leptokurtic and asymmetrically conditionally
distributed log-returns. As a result, at step 1, I define the scheme as follows, so as to
create random draws from the skewed Student-t distribution based on Fernandez &
Steel (1998) and Lambert, et.al. (2002).

e Step 1.1: Forecast the one-day-ahead conditional standard deviation based on
the simulated &, :

t t t

e Step 1.2: Generate random numbers, {z“ll}ficl from the skewed Student-t
distribution, where MC=5000 denotes the number of draws. The pseudo-
random numbers are used to compute the innovations for period t+1 onwards.

e Step 1.3: Create the hypothetical returns of time t+1, as:

Vit+1 = Oeg1tZin + cé )(1 (t)) + c1 yt fori=1,.., MC. (48)
The return at time t+1 is generated in accordance to the AR(1) progress.
e Step 1.4: Compute the simulated error term

€41 = 0t+1|tfi,1- (49)
e Step 1.5: Calculate the 1-day-ahead 95% and 99% VaR and ES as:

VaR?i()l/‘it = Uts1t T+ F(a' e(t))at+1|t (50)

ESP%, = E (Yera|Fear < VaR?S,)) (51)

And in the same way, we calculate the 99% VaR and
ES: VaR}?% and ES;?%

t+1])t t+1)t"
Two — day — ahead

Step 2: At this step 2, | define the scheme as follows, so as to create random draws
from the skewed Student-t distribution.

e Step 2.1: Create the forecast standard deviation of time t+2 based on the
simulated &,,,:

- t t) « t
Freale :J 04 O B+ b )at+1|t (52)
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Step 2.2: Generate random numbers, {Z,z}fl from the skewed Student-t
distribution, where MC=5000 denotes the number of draws. The pseudo-
random numbers are used to compute the innovations for period t+2 onwards.
Step 2.3: Create the hypothetical returns of time t+2, as:

Vierz = GraateZiz + ¢ (1= ¢0) + ¢ PFyeas fori=1,..,MC.  (53)
The return at time t+2 is generated in accordance to the AR(1) progress.

Step 2.4: Compute the simulated error term

Etpp = 5t+2|t5i,2- (54)
Step 2.5: Calculate the 2-days-ahead 95% and 99% VaR and ES as:

00 - MC
Var{}. = Fa ({yi,t+2}i=1) (55)
ESS, = E (Yera| sz < VaR?S,)) (56)

And in the same way, calculate 99% VaR and ES: VaR}}}, and ESZ,.

Three — day — ahead

Step 3: At this step 3, | define the scheme as follows, so as to create random draws
from the skewed Student-t distribution.

Step 3.1: Create the forecast standard deviation of time t+3 based on the
simulated &;,5:

g t £) t
Ot+3|t = \[a(()) + ag )51:2+2|t + b1( )01:2+2|t (57)

Step 3.2: Generate random numbers, {z“ls}ficl from the skewed Student-t

distribution, where MC=5000 denotes the number of draws. The pseudo-
random numbers are used to compute the innovations for period t+3 onwards.

Step 3.3: Create the hypothetical returns of time t+3, as:
- - - t t t) « .
Vit+3 = Or43|tZi3 T Cé )(1 - Cl( )) + Cl( ))’i,t+2 fori=1,..,MC. (58)
The return at time t+3 is generated in accordance to the AR(1) progress.
Step 3.4: Compute the simulated error term

Etp3 = 5t+3|t5i,3- (59)
Step 3.5: Calculate the 3-days-ahead 95% and 99% VaR and ES as:

0 o MC
VaR?f;‘it =F ({yi,t+3}i=1) (60)
ESP%, = E (Fevs|(ers < VarZSS,)) (61)

And in the same way, calculate 99% VaR and ES: VaR;7%,, and ESJ}%..

Ten-day-ahead

Step 10: At this step 10, | define the scheme as follows, so as to create random draws
from the skewed Student-t distribution.

Step 10.1: Create the forecast standard deviation of time t+10 based on the
simulated &;,4,:

- ¢ £) < t
Ott10|t = Jag) + ag )5t2+9|t + bi )0t2+9|t (62)

Step 10.2: Generate random numbers, {z“i,lo}?icl from the skewed Student-t

distribution, where MC=5000 denotes the number of draws. The pseudo-
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random numbers are used to compute the innovations for period t+10
onwards.

Step 10.3: Create the hypothetical returns of time t+10, as:

Vit+10 = Oes10/tZi10 T C(()t)(l - Cl(t)) + C1(t))7i,t+9 fori=1,..,MC. (63)
The return at time t+10 is generated in accordance to the AR(1) progress.

Step 10.4: Compute the simulated error term

Etr10 = 5t+10|t5i,10- (64)
Step 10.5: Calculate the 10-days-ahead 95% and 99% VaR and ES as:

00 - MC
VaR?i{ou =F ({Yi,t+1o}i=1) (65)
ES;)E;/%M =E (7t+10|(37t+10 < VaR?iof)on)) (66)

And in the same way, calculate 99% VaR and ES: VaR}}1y,, and ES} 5 ..

Twenty-day-ahead

Step 20: At this step 20, | define the scheme as follows, so as to create random draws
from the skewed Student-t distribution.

Step 20.1: Create the forecast standard deviation of time t+20 based on the
simulated &, ,,:

o t £) < t
Ocy20|t = \[a(()) + ag )gt2+19|t + b1( )Utz+19|t (67)

Step 20.2: Generate random numbers, {z“i,zo}li\icl from the skewed Student-t
distribution, where MC=5000 denotes the number of draws. The pseudo-
random numbers are used to compute the innovations for period t+20
onwards.

Step 20.3: Create the hypothetical returns of time t+20, as:

- - y t t t) o .
Yit+20 = Ot+20[tZi20 T C(g )(1 - Cl( )) + Cl( )Yi,t+19 fori=1,..,MC. (68)

The return at time t+20 is generated in accordance to the AR(1) progress.
Step 20.4: Compute the simulated error term

Etpz0 = 5t+20|t5i,20- (69)
Step 20.5: Calculate the 20-days-ahead 95% and 99% VaR and ES as:

0 o MC
VaR?i;)on = Fq ({Yi,t+20}i=1) (70)
ES?EOZ/%M =E (yt+20|(yt+20 = VaR?i;/"mt)) (71)

And in the same way, calculate 99% VaR and ES: VaR;},,,, and ES}J% ..

r-day-ahead

(A General Approximation for multi-period forecasting)

Step t: This step is used for obtaining estimates for multi-period VaR and ES, and
especially for t-days-ahead forecasts. We also create random draws from the skewed

Student-t distribution based on Fernandez & Steel (1998); Lambert, et.al. (2002);
Degiannakis, et.al. (2012); Christoffersen P. (1998).

Step t.1: Create the forecast standard deviation of time t+t based on the
simulated &;,.:
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o ¢ £) < t
Ottt = \/a(()) + ag )gtz+‘r—1|t + bi )at2+f—1|t (72)

e Step t.2: Generate random numbers, {Z”}ficl from the skewed Student-t
distribution, where MC=5000 denotes the number of draws. The pseudo-
random numbers are used to compute the innovations for period t+t onwards.

e Step t.3: Create the hypothetical returns of time t+r, as:
- - - t t t) - .
Vitrr = Orar|tZiz + cé )(1 - C1( )) + C1( )yi,tﬂ_l fori=1,.. MC. (73)
The return at time t+1 is generated in accordance to the AR(1) progress.
e Step 20.4: Compute the simulated error term

Etpr = 5-t+T|tZVi,‘L" (74)
e Step 20.5: Calculate the t-days-ahead 95% and 99% VaR and ES as:

VaR?f_{lt =F ({yi,tﬂ}i:l) (75)

Esffi/ft =E (7t+r (37t+r < VaR?ii/Tt)) (76)

And in the same way, calculate 99% VaR and ES: VaR}}%, and ES},.

3.3) Methodology of AR(1)-HAR-RV-skT model

The present section introduces the realized volatility model and forecasting the time
series behavior of volatility, which is able to reproduce the memory persistence
observed in the data. The realized volatility generates an additive cascade of different
volatility components, depending on the actions of different types of market
participants. This additive volatility cascade leads to a simple AR-type model in the
realized volatility with the feature of considering volatilities realized over different
time horizons. The basic idea is that the market participants have a different
perspective of their investment horizons. The name of this innovative model is
Heterogeneous Autoregressive model of the Realized Volatility (HAR-RV), by Corsi
F. (2004); Andersen, et.al. (2005). Surprisingly, in spite of the fact that it does not
formally belong to the class of long memory models, the HAR-RV model is able to
reproduce the same memory persistence observed in volatility as well as many of the
other main stylized facts of financial data.

As a consequence, in this section will be described all the methodology used
in order to build the model of AR(1)-HAR-RV, followed by the skewed Student-t
distribution, and forecasting the intra-day data for 95% and 99% Value-at-Risk
(VaR) and Expected Shortfall (ES), as the Basel Committee imposed for the last one.
A strong advantage of the HAR-RV model is the fact that the realized volatility
estimates are aggregated at different scales in order to have realized volatility
measures of the integrated volatility over different periods: daily, weekly and
monthly. Additionally, in the analysis of the second model, it has been used the

logarithmic transformation of the annualized realized volatility, /ZSZJf(RV).

The HAR-RV model for the logarithmic transformation of the annualized

realized volatility |25207", is defined as:
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log ’ZSZJS(RV) = wp + w; log ’25203_(11“/) +
w, log /25203—(1;?—1 + w; log /25203_(’;;1_1 + uy, (77)

where u,~i.i.d N(0,1).
The AR(1)-HAR-RV-skT model is defined as an AR(1) process for the daily log-
returns, y, = ¢5(1 —cb) + ¢y, + &
The unpredictable component ¢, is designed to follow the skewed Student-t
distribution (see also Appendix A, eg. 107, p.65) conditional on the most recently

available information set, or ¢, = (yt — cét)cl(t)yt_l)IIt_1~skT(0,1;g, v). Moreover,

the unpredictable component is decomposed as ¢; = ztat(RV).

The daily volatility is estimated by a HAR model for the log /ZSZUtZ(RV),
being the dependent variable:

e = cb(1 = cb) + ctye_y + 2,6 (78)

The prediction of the RV volatility has been acquired using the following
approximation:

52
2

= exp ((\7\70 + W, log ’2520’?91;‘/) + Ww,log /2520?5};?_1 + W3 log /ZSZGfE};IZ/?t_1> /252>

and z,~skT(0,1; g,v). (79)

Based on Xekalaki & Degiannakis (2010) and Christoffersen (2003), a Monte

Carlo simulation algorithm for computing VaR?>” and ESZ?? based on
Heterogeneous Autoregressive model of the Realized Volatility (HAR-RV) model is
illustrated. Consider the AR(1)-HAR-RV-skT with the above framework of equations
71-73, and finally z,~skT(0,1, g,v) and y,~skT(u,, 62, g,v), the 1-day-ahead 95%
VaR and ES are obtained as following:

One — day — ahead
Step 1: In this step, | computed the one-day-ahead HAR - Realized Volatility.

e Step 1.1: Compute the one-day-ahead realized volatility:
2(RV)
t+1]|t

2
= exp ((wo + 1, log 25207 + ,log /2520?5’5}[? + W3 log /2520?§’§‘{?t> /252)
(80)

Note that log |2520; %) denotes the average of i) actual values for points in

time prior to t and ii) predicted values for points in time subsequent time t. The

same case holds for log /25203_(’2?1":1.
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e Step 1.2: Generate MC=5000 random numbers, {2,1}7:1 from the skewed
Student-t distribution, to be used to simulate the innovations for period t+1

onwards.
e Step 1.3: Create the hypothetical returns of time t+1, as:
- RV) t t t) o ,
Vitr1 = Ut(+1|)tzi,1 + cé )(1 - C1( )) + C1( )yi,t fori=1,.. MC. (81)

The return at time t+1 is generated in accordance to the AR(1) progress. The

value of the unpredictable component is &, = g,y Z1.
e Step 1.4: Calculate the 1-day-ahead 95% and 99% VaR and ES as following:
VaR?i{u = Ursape T F(a;0°) ({Yi,t+1}l-=1) (82)
% 1ok 1-0.05+i0.05(k+1) "
ESIS%, = k1 3k, (VaRSH't )> )

And in the same way, calculate 99% VaR and ES: VaR}7, and ES}[1!,.

Two — day — ahead

Step 2: These steps are used for obtaining estimates for multi-period VaR and ES, and
especially for 2-day-ahead forecasts. We also create random draws from the skewed
Student-t distribution based on Fernandez & Steel (1998); Lambert, et.al. (2002);
Degiannakis et.al. (2012); Christoffersen P. (1998); Clements, et.al. (2006).

e Step 2.1: Compute the two-day-ahead realized volatility:

2(RV)
t+2]t

2
= exp ((Wo + i, log /zsszfﬁ” + W,log /252c;f£§?+1 + W3 log /2520?5’%:1“) /252)

(84)
e Step 2.2: Generate MC=5000 random numbers, {z“lz}ficl from the skewed
Student-t distribution, to be used to simulate the innovations for period t+2

onwards.
e Step 2.3: Create the hypothetical returns of time t+2, as:
- RV) < - .
Fiere = Oqptio T 6 (1= ¢f?) +eFieas fori=1,.,MC  (89)
The return at time t+2 is generated in accordance to the AR(1) progress. The
value of the unpredictable component is &, = afgf? Ziy.
e Step 2.4: Calculate the 2-day-ahead 95% and 99% VaR and ES as following:
% - McC
VaR?f-z/n = fryae + F(a@;69) ({:Vi,t+2}i=1) (86)
% - Wi 1-0.05+i0.05(k+1) "
ESZd =kt i=1<VaRS+2|t )> (87)

And in the same way, calculate 99% VaR and ES: VaR;}, and ES}),.

Three — day — ahead

Step .3: These steps are used for obtaining estimates for multi-period VaR and ES,
and especially for 3-day-ahead forecasts. We also create random draws from the
skewed Student-t distribution.

e Step 3.1: Compute the three-day-ahead realized volatility:
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2(RV)
t+3|t

2
= exp ((Wo + W, log /2520535") + W,log /252035’5‘:’&2 + 3 log /25205%;@2) /252)

(88)
e Step 3.2: Generate MC=5000 random numbers, {213}7:1 from the skewed
Student-t distribution, to be used to simulate the innovations for period t+3

onwards.
e Step 3.3: Create the hypothetical returns of time t+3, as:
- RV) « - .
Vitss = at(+3|)tzi,3 + cét)(l — cl(t)) + cl(t)yl-,Hz fori=1,.. MC. (89)
The return at time t+3 is generated in accordance to the AR(1) progress. The
value of the unpredictable component is &5 = o, ya(; Z;-
e Step 3.4: Calculate the 3-day-ahead 95% and 99% VaR and ES as following:
% - McC
VaR?ig{u = pey3)e + F(a;0) ({Yi,t+3}i=1) (90)
% 71wk (1-0.05+i0.05(k+1)"")
Esffg/lt = k1 i=1<VaRt+3|t > (91)

And in the same way, calculate 99% VaR and ES: VaR;%y, and ES}%,.

Ten — day — ahead

Step 10: This step is used for obtaining estimates for multi-period VaR and ES, and
especially for 10-day-ahead forecasts. We also create random draws from the skewed
Student-t distribution.

e Step 10.1: Compute the ten-day-ahead realized volatility:

2(RV)
t+10|t
2
= exp ((wo + W, log /2520?&” + W,log /2520?33;9 + W3 log /2520§E§Z?t+9> / 252)

(92)
e Step 10.2: Generate MC=5000 random numbers, {z“i,lo}?icl, from the skewed
Student-t distribution, to be used to simulate the innovations for period t+10
onwards.
e Step 10.3: Create the hypothetical returns of time t+10, as:
- RV) - .
Yit+10 = at(+13|tzi,10 + C(gt)(l o Cl(t)) + Cl(t)Yi,t+9 fori=1,..,MC. (93)

The return at time t+10 is generated in accordance to the AR(1) progress. The
(RV)

value of the unpredictable component is &;,,0 = O¢v10le Zi10-
e Step 10.4: Calculate the 10-day-ahead 95% and 99% VaR and ES as
following:
% . McC
VaR?il/ou = fry1oe T F(a;0°) ({yi,t+10}i=1) (94)
% - i 1-0.05+i0.05(k+1) ™"
ESt(‘3-+5-1/0|t =k ! lk=1 <VaRS+1o|t )> (95)
And in the same way, calculate 99% VaR and ES: VaR;1y,, and ES}l5 ..
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Twenty — day — ahead

Step 20: These steps are used for obtaining estimates for multi-period VaR and ES,
and especially for 20-day-ahead forecasts. We also create random draws from the
skewed Student-t distribution.

e Step 20.1: Compute the twenty-day-ahead realized volatility:

2(RV)
t+20]¢
2
= exp ((\’fvo + Wy log ’2520?&?? + Wwylog ’ZSZGfJETS/:)ng + W3 log ’2520%};&19> /252)

(96)
e Step 20.2: Generate MC=5000 random numbers, {Zijzo}li\icl, from the skewed
Student-t distribution, to be used to simulate the innovations for period t+20
onwards.
e Step 20.3: Create the hypothetical returns of time t+20, as:
Vit+20 = Ut(f;/gnzl 20 Cé )(1 (t)) + C1(t)}7¢ t+10 fori=1,..,MC. (97)
The return at time t+20 is generated in accordance to the AR(l) progress. The
value of the unpredictable component is &4, = <20, %

t+20]t Zi,20-
e Step 20.4: Calculate the 20-day-ahead 95% and 99% VaR and ES as
following:
% - Mmc
VaR?iz/on = Uet20i¢ T F(a; 6%) ({Yi,t+20}i=1) (98)
% 1-0.05+i0.05(k+1) "
ESSS% . =k 13K (V RE+20|t )> (99)

And in the same way, calculate 99% VaR and ES: VaR}5,, and ES}%,

7 — day — ahead
(A General Approximation for multi-period forecasting)

Step t: These steps are used for obtaining estimates for multi-period VaR and ES,
and especially for rz-day-ahead forecasts. We also create random draws from the
skewed Student-t distribution based on Fernandez & Steel (1998); Lambert, et.al.
(2002); Degiannakis et.al. (2012); Christoffersen P. (1998); Clements, et.al. (2006).

e Step t1.1: Compute the t-day-ahead realized volatility:

2(RV)
t+1T|t
= exp ((WO + w, log ’2520’?)5 )1|t + w,log /252 fﬁwg r+ro1 T W3 log \/25205&”22 e 1) /252)

(100)
e Step 1.2: Generate MC=5000 random numbers, {zw} , from the skewed

Student-t distribution, to be used to simulate the mnovatlons for period t+1
onwards.

e Step 1.3: Create the hypothetical returns of time t+r, as:
- (RV) » ) (t) 5 :
Viter = OpprpZizc + ¢ (1 ) +c¢; Vitpr—1 fori=1,..,MC. (101)
The return at time t+t is generated in accordance to the AR(1) progress. The
value of the unpredictable component is &;,, = at(ffl)t Zi 1.

e Step t.4: Calculate the t-days-ahead 95% and 99% VaR and ES as following:
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0 - Mc
VRS, = terepe + F(a; 09 (Freac)ir) (102)

i=1

ESO% — f1 k. (VaR(1—o.05+io.05(f<+1)_1)> (103)

t+t|t t+tT|t

And in the same way, calculate 99% VaR and ES: VaR}?% and ES?2%

t+t|t t+t|t*

3.4) Empirical Results; VaR, ES and the accuracy of the two
models

The results for one-step-ahead VaR;>% and ES forecasting are presented in Table 6,

across the nine assets; 3 stock indices, 3 metal-COMEX (metal commodity exchange)
and 3 FOREX of Dollar (foreign exchange rates). The results of one-step-ahead 95%
do not only include the average values of VaR and ES, but also present the
backtesting tests of Kupiec and Christoffersen and the Mean Squared Errors (MSE)
for ES, as well. The models examined in Table 6 are the following two; the AR(1)-
GARCH(1,1)-skT and the AR(1)-HAR-RV-skT models.

Overall, the Generalized Autoregressive model of conditional volatility seems
not to improve at all the forecasting accuracy of VaR, across the nine assets for the
one-step-ahead time horizon. To begin with, the first part of the analysis of Table 6
will be focused on the VaR analysis of AR(1)-GARCH(1,1)-skT model. The results
appear to corroborate the findings of other researchers from the literature; Angelidis,
et.al. (2004); McMillan & Kambouroudis (2009), and particularly, the results indicate
that VaR models are not much robust across different markets. As a consequence, the
optimal model varies from one index to another. For instance, at the category of Stock
indices the optimal model differs from the optimal of FOREX category, the same as
well as happens for the COMEX, respectively. Now according to the results of the
(Kupiec, 1995) backtesting procedure, the observed violation rate is not statistically
equal to the expected violation rate (5%) in more than the half cases, as indicate the
red color of the Kupiec p-values column. In more details, this column of Table 6
presents the rejection or not of the null hypothesis; if the exception rate is statistically
equal to the expected rate. The null hypothesis denotes that the model is adequate, but
when the null hypothesis rejected, the observed violation rate will be smaller than the
expected one. As a result, for the GARCH model, the most accurate category is
FOREX (the foreign exchange rate) indices, which all p-values of EURO, British
Pound and CAD, are all higher than the 5% confidence level (a=0,05). Contrary to the
previous model (GARCH) of conditional volatility, the HAR model for 95% of one-
day-ahead forecasting seems to be better, due to the p-values of Kupiec test which are
higher than the expected 0.05 value, except for EurostoXXsg, FTSE100 from stocks
and Silver (SV) from COMEX market, where these values were rejected.

A second criterion to check the accuracy of one-step-ahead GARCH and
HAR-RV model is the Christoffersen test, a more elaborate criterion in which
Christoffersen (1998) combined the Kupiec’s former criterion. Practically, conditional
test examined concurrently the total number of failures by checking if is equal to the
expected number and the VaR failure process if it is independently distributed or not.
As we see again in Table 6, all the independence p-values of Christoffersen test are
correct for the two models as well, since no one rejected for a=0.05. Furthermore, it is
important to mention that the percentage of observed exception rate is lower than 5%
for all the nine assets (Stocks, COMEX, and FOREX) at the GARCH model. This is a

46



good point because it means that GARCH model does not underestimate the true VaR
figure. Additionally, from the column of observed exception rate, we can easily
determine that the most suitable category is that of FOREX market (foreign exchange
rate), due to the fact that the percentage of violations are quite close to the 5%
confidence level.

Table 6: One-step-ahead VaR*** and ES modeling results.

Table 6: 1-Step-ahead VaR and ES Modeling Results (95%6)
Part A. GARCH-skT
Number
Index Ofais:sz' Average | Average | Average I(E);s:prgi?l Kupiec Inde_zpendence
VaR ES MSE p-value Christoffersen
VaR Rate
forecasts
Stock Indices GARCH-skT
S&P500 2901 -2,079061 | -2,916988 | 0,018416 4,03% 0,013542 0,894239
EurostocXX50 2949 -2,925082 | -4,216117 | 0,027287 3,29% 0,000006 0,144379
FTSE100 2912 -2,087907 | -2,852440 | 0,024185 4,02% 0,011929 0,729514
Commodities GARCH-skT
HG (Copper COMEX) 2897 -3,376016 | -4,649356 | 0,069705 3,52% 0,000117 0,826045
SV (Silver COMEX) 2897 -4,699689 | -6,947506 | 0,115868 2,59% 0,000000 0,181849
GC (Gold COMEX) 2897 -2,377837 | -3,381763 | 0,027238 3,14% 0,000001 0,932133
Foreign Exchange Rates GARCH-skT
EUR/USD (EC) 2898 -1,093904 | -1,436670 | 0,003504 | 4,42% 0,142009 0,172338
GBP/USD (BP) 2899 -1,011634 | -1,322828 | 0,006960 | 4,52% 0,227191 0,684228
CAD/USD (CD) 2899 -1,019235 | -1,323052 | 0,003341 [ 4,66% 0,391234 0,490631
Part B. AR(1)-HAR-RV-skT
Number
Index Ofaij;iip_ Average | Average | Average I(E):::S:r:;?)?n Kupiec Indgpendence
VaR ES MSE p-value Christoffersen
VaR Rate
forecasts
Stock Indices AR(1)-HAR-RV-skT
S&P500 2901 -1,921296 | -2,695686 | 0,015017 | 4,45% 0,163817 0,185135
EurostocXX50 2949 -2,646304 | -3,809621 | 0,035701 3,93% 0,005852 0,268402
FTSE100 2912 -1,968041 | -2,688660 | 0,023128 3,91% 0,005294 0,470672
Commodities AR(1)-HAR-RV
HG (Copper COMEX) 2897 -3,157860 | -4,352708 | 0,090732 [ 4,76% 0,553438 0,344276
SV (Silver COMEX) 2897 -4,138996 | -6,118718 | 0,143401 3,21% 0,000002 0,110139
GC (Gold COMEX) 2897 -2,153282 | -3,058488 | 0,039716 4,31% 0,083441 0,788992
Foreign Exchange Rates AR(1)-HAR-RV
EUR/USD (EC) 2898 -1,011098 | -1,327306 | 0,003826 5,18% 0,665520 0,648122
GBP/USD (BP) 2899 -0,961006 | -1,256177 | 0,006487 | 5,17% 0,668640 0,769083
CAD/USD (CD) 2899 -1,009675 | -1,310138 | 0,003412 4,86% 0,735307 0,123485

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 5% significance level.

*The bold fond of MSE column denotes the lowest value for 5% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 5% significance level.

The best among the three exchange rates seems to be the Canadian Dollar (CAD) with
the smallest deviation of 0.34% units for the GARCH model, as comparing the total
number of violations (4.66%) to the expected number of 5%. However, as we see at
the graph of CAD (Figure 17), there is not total coverage of Value-at-Risk, using
GARCH(1,1) because the red line of VaR does not catch all the negative peaks,
representing the failures of VaR®™" estimation. On the other hand, the observed
exception rates of HAR-RV model are quite satisfactory mainly for the FOREX
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category, since all the three exchange rates are quite similar to 5%, not to mention that
EUR/USD (5,18%) and GBP/USD (5.17%), are the FOREX assets with the smallest
deviation from the expected rate (Figure 18). Despite the fact that they are higher than
5% and as a result, this indicates a kind of underestimation of the true VaR figure, the
failure of the forecasts limited just to 0.18 and 0.17 units, respectively, a really small
difference. As a consequence, HAR model forecasts well enough for FOREX
category, as well.

Figure 17: Graph of daily log-CAD/USD FOREX and one-step-ahead VaR**” of GARCH model.
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Figure 18: Graph of daily log-GBP/USD FOREX and one-step-ahead VaR*™"” of HAR-RV model.
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*The other graphs of daily log-returns are all available from the author on request.

The second part of the analysis concerns the ES measure that reports to the risk
managers the expected loss of their investments, if a violation, or in other words, an
extreme event occurs. At Table 6 there are the average ES of both GARCH and HAR-
RV models. As we can see in Figure 17 an interesting period to focus on, which is
characterized by high volatility, will be around at the 1200™ observation and in the
same way in Figure 18, will be around at the 1250"™ observation. Turning to the
estimates for the quadratic loss function that measures the distance between actual
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returns and expected returns in the event of a VaR violation (MSE of ES), the AR(1)-
GARCH(1,1)-skT model produces lower values of the MSE for the one-day-ahead
and especially, for the exchange rates (Euro, GBP, CAD), when from the other two
markets, the smallest MSE value were S&Psq for stock indices and Gold from
commodities. The same results applied for the second model; AR(1)-HAR-RV-skT
just with little differences in the MSE values. The best market, concerning the lowest
MSE was again the FOREX at one-step-ahead HAR-RV model of 95% confidence
level. Finally, the HAR-RYV specification seems to be preferable rather than the simple
GARCH(1,1), as HAR satisfies the most of the prerequisites, concerning the
evaluation and the accuracy of VaR.

Table 7: 10-step-ahead VaR*” and ES modeling results.

Table 7: 10-Step-ahead VaR and ES Modeling Results (95%)
Part A. GARCH-skT

Number

of 10-step Observed . Independe Conditional
Average | Average | Average . Kupiec nce
Index ahead VaR ES MSE Exception value | Christoffe Coverage
VaR Rate P Christoffersen
rsen
forecasts
Stock Indices GARCH-skT
S&P500 290 -1,787855 | -2,361605 | 0,068746 | 5,17% | 0,894479 | 0,199893 0,435886
EurostocXX50 294 -2,427851 | -3,161031 [ 0,209316 | 5,10% | 0,945827 | 0,788741 0,962515
FTSE100 291 -1,846542 | -2,440472 | 0,178061 | 5,84% | 0,522282 | 0,145521 0,282526
Commodities GARCH-skT

HG (Copper COMEX) 289 -2,917354 | -3,722252 | 0,130557 | 4,50% | 0,682967 | 0,267495 0,497491
SV (Silver COMEX) 289 -3,5694869 | -4,574125 | 0,414053 | 6,57% | 0,244433 | 0,506262 0,407256

GC (Gold COMEX) 289 -1,952748 | -2,484206 | 0,097983 | 8,30% | 0,018587 | 0,036584 0,007049
Foreign Exchange Rates GARCH-skT

EUR/USD (EC) 289 -1,017000 | -1,285351 [ 0,004900 | 4,50% | 0,682967 | 0,119736 0,274230

GBP/USD (BP) 289 -0,937435 | -1,185187 [ 0,007209 | 4,50% | 0,681997 | 0,267495 0,497222

CAD/USD (CD) 289 -0,967634 | -1,230028 | 0,012442 | 5,19% | 0,892335 | 0,801553 0,960074

Part B. AR(1)-HAR-RV-skT

Number

of 10-step Observed . Independe Conditional
Average | Average | Average . Kupiec nce
Index ahead VaR ES MSE Exception value | Christoffe Coverage
VaR Rate P Christoffersen
rsen
forecasts
Stock Indices AR(1)-HAR-RV-skT
S&P500 290 -1,512188 | -1,905477 | 0,155025 | 7,24% | 0,100002 | 0,246049 0,131921
EurostocXX50 294 -2,045223 | -2,562995 [ 0,261478 | 6,80% | 0,181864 | 0,726299 0,385803
FTSE100 291 -1,640489 | -2,063329 [ 0,193879 | 7,22% | 0,103331 | 0,630244 0,236325
Commodities AR(1)-HAR-RV

HG (Copper COMEX) 289 -2,655036 | -3,339026 | 0,171435 | 4,50% | 0,682967 | 0,604540 0,804524
SV (Silver COMEX) 289 -3,029985 | -3,807393 [ 0,536055 | 8,65% 0,009832 | 0,898248 0,035412

GC (Gold COMEX) 289 -1,724372 | -2,173198 | 0,105001 | 9,00% | 0,005005 | 0,022996 0,001469
Foreign Exchange Rates AR(1)-HAR-RV
EUR/USD (EC) 289 -0,938610 | -1,179771 | 0,007220 | 5,19% | 0,891263 | 0,214108 0,457921
GBP/USD (BP) 289 -0,886966 | -1,111539 | 0,003910 | 4,15% | 0,488874 | 0,306938 0,467009
CAD/USD (CD) 289 -0,952570 | -1,195246 | 0,009237 | 5,19% | 0,892335 | 0,801553 0,960074

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 5% significance level.

*The bold fond of MSE column denotes the lowest value for 5% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 5% significance level.

Table 7 shows the results for the 10-steps-ahead VaR forecasting of 95%
significance level of GARCH and HAR-RV models, respectively. For this forecasting
horizon, the Heterogeneous Autoregressive Realized Volatility specification (HAR-
RV) does not appear to overperform the GARCH(1,1) specification. According to the
Kupiec test, the GARCH and the HAR-RV model as well, produce an observed
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exception rate which is not statistically different to the anticipated failure rate of 5%
for the majority of the nine asset markets. Especially, the corresponding figure for the
GARCH specification is 8 out of 9 indices, apart from the Gold COMEX (0,018587).
Moreover, the corresponding figure for the HAR-RV specification is 6 out of 9
indices, apart from the Kupiec values of Silver and Gold COMEX, which are rejected.
The results of the Christoffersen test indicate that the VaR violations are all
independently distributed under the AR(1)-GARCH-skT model. As far as the AR(1)-
HAR-RV-skT model is concerned, the VaR violations are independently distributed
for the 3 Stocks, the 3 FOREX and the one out of three COMEX; Silver and Gold
reject the null hypothesis of Christoffersen test.

Although the forecasts are quite good both for GARCH and HAR-RV if we
leave behind few exceptions, hence the modeling results are not robust enough across
the different indices and markets tested. This is illustrated by the fact that MSE values
are not small enough. To be more precise, GARCH specification produces a lower
MSE for ES values only for Euro FOREX (EUR/USD) and for British Pound FOREX
(GBP/USD), as well as HAR-RV produces the lowest MSE only for the whole three
FOREX indices (Euro, GBP and CAD). At this point, the short memory GARCH
specification is preferable since it is the more parsimonious model, if we take into
consideration the column of Observed Exception Rate of Table 7, which indicates
results almost around to 5% for GARCH, contrary to the HAR model that the
percentage of violations is too high than that of 5% at the majority of the assets tested.
By all accounts, the most suitable values around 5% are all the three Stock indices,
Copper (HG) for COMEX category and CAD/USD for FOREX category, depending
on the GARCH model, let alone for HAR-RV; Copper (HG) COMEX has a
satisfactory range of forecast with 4.5% and from the FOREX category EUR/USD
(5.19%) and CAD/USD (5.19%). As far as the Stock indices, if we take into
consideration that the model runs only with a few observations (an average of 289
obs.) for 10-step-ahead forecasts, the results are pretty good for both models, and
especially for GARCH due to the percentage of the observed exception rates, which
are closely around 5%. For instance, if we compare the Figure 19 to Figure 20, we

Figure 19: Graph of daily log-XXs, Stock and 10-step-ahead VaR*” of GARCH model.
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Figure 20: Graph of daily log-XXs, Stock and 10-step-ahead VaR*™” of HAR-RV model.
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*The other graphs of daily log-returns are all available from the author on request.

can realize that the GARCH specification for the EurostoXXsg is preferable rather
than HAR-RYV, as the red dots of 10-steps-ahead forecasts of GARCH cover the losses
when a violation occurs in a more accurate way. The previous claim is illustrated by
the fact that the HAR specification does not cover all the negative peaks of the
violated log returns, as we can observe in Figure 20.
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Table 8: 20-step-ahead VaR*™” and ES modeling results.

Table 8: 20-Step-ahead VaR and ES Modeling Results (95%0)
Part A. GARCH-skT
Number Independe .
of 20-step Observed . Conditional
Average | Average | Average . Kupiec nce
Index ahead VaR ES MSE Exception p-value | Christoffe C_overage
VaR Rate Christoffersen
forecasts rsen
Stock Indices GARCH-skT
S&P500 145 -1,829135 | -2,478850 [ 0,259767 | 5,52% 0,77922 | 0,439753 0,713368
EurostocXX50 147 -2,518926 | -3,344469 | 0,367677 | 5,44% 0,81496 | 0,433228 0,715723
FTSE100 145 -1,899795 | -2,582968 | 0,181323 | 6,90% 0,32645 | 0,155397 0,225217
Commaodities GARCH-skT
HG (Copper COMEX) 144 -2,916934 | -3,756540 [ 0,294519 | 4,17% | 0,625218 | 0,225305 0,425526
SV (Silver COMEX) 144 -3,626941 | -4,649445 | 0,055227 | 8,33% | 0,096048 | 0,137871 0,083262
GC (Gold COMEX) 144 -1,971987 | -2,530160 | 0,198717 | 8,33% | 0,096048 | 0,993925 0,993925
Foreign Exchange Rates GARCH-skT
EUR/USD (EC) 144 -1,024463 | -1,299905 [ 0,002834 | 6,94% | 0,319503 | 0,219876 0,287056
GBP/USD (BP) 144 -0,941968 | -1,196488 [ 0,017590 | 4,17% | 0,624566 | 0,468414 0,682070
CAD/USD (CD) 144 -0,980165 | -1,256920 [ 0,028583 | 5,56% | 0,777733 | 0,330049 0,597984
Part B. AR(1)-HAR-RV-skT
Number Independe .
of 20-step Observed . Conditional
Average | Average | Average . Kupiec nce
Index ahead VaR ES MSE Exception p-value | Christoffe Cgverage
VaR Rate Christoffersen
forecasts rsen
Stock Indices AR(1)-HAR-RV-skT
S&P500 145 -1,504066 | -1,895696 | 0,378001 | 6,21% | 0,520418 | 0,569563 0,691951
EurostocXX50 147 -2,034986 | -2,556575 | 0,516498 7,48% 0,003450 | 0,003450 0,006110
FTSE100 145 -1,629913 | -2,046791 | 0,138419 | 8,97% | 0,049006 | 0,437259 0,106532
Commodities AR(1)-HAR-RV
HG (Copper COMEX) 144 -2,632820 | -3,308422 | 0,392020 | 6,25% | 0,518486 | 0,573709 0,693010
SV (Silver COMEX) 144 -3,016907 | -3,788454 | 0,183810 | 10,42% | 0,009253 | 0,060497 0,005808
GC (Gold COMEX) 144 -1,712957 | -2,159939 | 0,205898 | 10,42% | 0,009253 | 0,589252 0,029235
Foreign Exchange Rates AR(1)-HAR-RV
EUR/USD (EC) 144 -0,943720 | -1,186161 | 0,002974 | 6,25% | 0,518486 | 0,271359 0,443355
GBP/USD (BP) 144 -0,884976 | -1,110776 | 0,013882 | 4,17% | 0,624566 | 0,468414 0,682080
CAD/USD (CD) 144 -0,949854 | -1,193339 [ 0,019583 | 6,25% | 0,519129 | 0,271359 0,443639

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 5% significance level.

*The bold fond of MSE column denotes the lowest value for 5% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 5% significance level.

Table 8 shows the results for the forecasting of 20-step-ahead VaR across the
nine assets of Stocks, Commodities and Foreign Exchange Rate categories for both
GARCH(1,1) and HAR-RV 95% significance level. For this longer time horizon the
performance of the GARCH model slightly have improved comparing to the previous
10-step-ahead GARCH model. Furthermore, HAR seems to be less important at this
time horizon, as there are many more rejections of the backtesting procedure
comparing to the previous one. The Kupiec test results for the GARCH model suggest
that the observed exception rate is not statistically different to the expected failure rate
for all the 9 different assets. However, the Kupiec test results are little different for the
HAR-RV model, as there are three rejections of the null hypothesis; particularly for
EurostoXXso, Silver (SV) and Gold (GC) commodities, in which the observed
exception rates are statistically different to the expected one. As far as the 5™ column
of observed exception rate is concerned, it is an undeniable fact that the values
indicate a widespread underestimation of the true VVaR figure by both models, because
almost all these values are much higher than the 5%. The most suitable values that do
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not underestimate the true VaR are HG (Copper COMEX) and GBP/USD (British
Pound) with the percentage of 4.17% for the GARCH model, as well as only
GBP/USD FOREX for the HAR-RV specification with 4.17% again.

Moreover, if we focus on the independence and conditional coverage of
Christoffersen test, we will see that there isn’t any rejection. The purpose of the test is
to examine the null hypothesis that the VaR failures are independent and are spread
over the whole estimation period, against the alternative hypothesis that the failures
tend to be clustered. The main advantage of this test is that it can reject a model that
generates too many or too few cluster exceptions, where in this case something like
that does not happen. Finally, at Table 8 presented the MSE of ES, which measures
the distance between actual returns and expected returns in the event of a VaR
violation for 20-step-ahead period. As we can see, the lowest MSE values are
EUR/USD (0.002834) for GARCH and EUR/USD (0.002974) for HAR, respectively.

To conclude, after checking the 1-step, 10-step and 20-step-ahead of 95%
GARCH and HAR-RV models, we can infer that the results of VaR models are not
much robust across different markets. As a consequence, the optimal model varies
from one index to another. Hence, it is difficult to propose a clear-cut conclusion,
concerning which one of the two models is the most accurate and reliable to forecast
adequately the losses of a specific portfolio. More carefully, we observe that FOREX
category acquire satisfactory forecasts with the method of Value-at-Risk both for
GARCH and HAR as well, at all the time horizons; 1-step, 10-step and 20-step-ahead.
This is undoubtedly a strong advantage; the fact that VaR®™” can forecast with high
precision the losses of exchange rates assets for all the upcoming time horizons, let
alone specifically for periods far ahead to the future, such as 10-days and 20-days-
ahead.
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Table 9: 1-step-ahead VaR*** and ES modeling results.
Table 9: 1-Step-ahead VaR and ES Modeling Results (99%0)

Part A. GARCH-skT

Number
Index Ofat's;‘;p' Average | Average | Average (Ej;s:;%zi Kupiec Inde_:pendence
VaR ES MSE p-value Christoffersen
VaR Rate
farecasts
Stock Indices GARCH-skT
S&P500 2901 | -3,397275| -4,338985 | 0,003592 | 0,48% 0,001845 0,712464
EurostocXX50 2949 | -4,925017 | -6,509659 | 0,007183 | 0,47% 0,001403 0,714722
FTSE100 2912 | -3,303595 | -4,102522 | 0,003604 | 0,82% | 0,325364 0,193478
Commodities GARCH-skT

HG (Copper COMEX) 2897 | -5,383969 | -6,786839 [ 0,025746 [ 0,83% [ 0,337964 0,526584
SV (Silver COMEX) 2897 | -8,150103 | -11,04588 [ 0,021580 | 0,52% 0,004049 0,001876

GC (Gold COMEX) 2897 | -3,944656 | -5,573181 [ 0,002840 | 0,55% 0,008146 0,076609

Foreign Exchange Rates GARCH-skT
EUR/USD (EC) 2898 | -1,645303 | -1,970461 | 0,000617 | 0,72% 0,117176 0,579725
GBP/USD (BP) 2899 | -1,513355] -1,802595 [ 0,002152 | 0,97% | 0,852560 0,274383
CAD/USD (CD) 2899 | -1,510575 | -1,784866 | 0,000705 1,07% 0,710622 0,342695
Part B. AR(1)-HAR-RV-skT
Number
Index Ofalh-s;ijp- Average | Average | Average S)E)CS:;;?)?] Kupiec Inde_:pendence
VaR ES MSE p-value Christoffersen
VaR Rate
farecasts
Stock Indices AR(1)-HAR-RV-skT
S&P500 2901 | -3,139733 | -4,008740 | 0,002972 | 0,52% 0,003963 0,692885
EurostocXX50 2949 | -4,449075 | -5,871900 | 0,004595 | 0,37% 0,000087 0,774075
FTSE100 2912 | -3,114106 | -3,865971 [ 0,004902 [ 0,82% | 0,325364 0,193478
Commodities AR(1)-HAR-RV-skT

HG (Copper COMEX) 2897 | -5,041081 | -6,358136 [ 0,031726 [ 0,97% [ 0,854016 0,459735
SV (Silver COMEX) 2897 | -7,179038 | -9,724841 [ 0,045500 | 0,72% 0,117591 0,008409

GC (Gold COMEX) 2897 | -3,567694 | -4,626939 [ 0,011326 | 0,59% 0,015434 0,088205

Foreign Exchange Rates AR(1)-HAR-RV-skT
EUR/USD (EC) 2898 | -1,519651 | -1,818650 [ 0,000835 [ 0,97% | 0,854016 0,459735
GBP/USD (BP) 2899 | -1,436972 | -1,710775 | 0,001820 | 1,17% | 0,362677 0,368925
CAD/USD (CD) 2899 | -1,495670 | -1,766665 [ 0,000386 | 0,76% | 0,172967 0,561809

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 1% significance level.

*The bold fond of MSE column denotes the lowest value for 1% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 1% significance level.

Now at this point, the results for the one-day-ahead VaR forecasting of 99%
across the nine assets; consisting of stock indices, commodities and exchange rates for
both GARCH and HAR-RV specifications are shown in Table 9. At a first glance, the
99% VaR suggest better forecasting results for the two models and to begin with the
AR(1)-GARCH(1,1)-skT, only two of the stocks and one out of three COMEX reject
the null hypothesis of the Kupiec backtesting procedure. Additionally, the AR(1)-
HAR-RV-skT model is clearly improved versus the HAR model of 95% VaR of the
one-step-ahead, because the red values of 99% are much less than those of 95%. As
far as the Christoffersen test for independence is concerned, the observed violation
rate is statistically different only for Silver (SV) at both models.

Once again, the results of 99% VaR for one-step-ahead indicate that VaR
models are not much robust across different markets. Especially, at this time horizon,
both for GARCH and HAR models maybe there are some difficulties to forecast
accurately VaR for the category of Stocks, as two out of three stock indices rejected,

54



concerning the Kupiec test and for the category of Commodities, as well. (For
example, look at Figure 21 and Figure 22 that shows a kind of overestimation of the
true VaR). Exactly the same happens for HAR model. As a consequence, the optimal
model varies from one index to another. Hence, the best category that again forecasts
adequately VaR is FOREX, having a great percentage of violations near to the

expected level of 1%.

Figure 21: Graph of daily log-S&Psq, Stock and 1-step-ahead VaR** of AR(1)-GARCH(1.1) model.
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Figure 22: Graph of daily log-HG COMEX and 1-step-ahead VaR*** of AR(1)-HAR-RV model.
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*The other graphs of daily log-returns are all available from the author on request.
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Table 10: 10-step-ahead VaR®*” and ES modeling results.

Table 10: 10-Step-ahead VaR and ES Modeling Results (99%b)
Part A. GARCH-skT
Number Independe .
of 10-step Observed . Conditional
Average | Average | Average . Kupiec nce
Index ahead VaR ES MSE Exception p-value | Christoffe C_overage
VaR Rate Christoffersen
forecasts rsen
Stock Indices GARCH-skT
S&P500 290 -2,713784 | -3,263684 | 0,015066 | 1,03% | 0,953674 | 0,801911 0,967387
EurostocXX50 294 -3,609985 | -4,295991 | 0,132889 | 1,02% | 0,976256 | 0,803254 0,969012
FTSE100 291 -2,799076 | -3,361837 | 0,107582 | 3,09% | 0,004043 | 0,447644 0,012028
Commodities GARCH-skT
HG (Copper COMEX) 289 -4,239563 | -4,914170| 0,071091 | 1,73% | 0,260592 | 0,674235 0,486194
SV (Silver COMEX) 289 -5,193212 | -6,033968 | 0,212725 | 3,46% | 0,001043 | 0,396282 0,003232
GC (Gold COMEX) 289 -2,825399 | -3,266032 | 0,035635 | 3,08% | 0,000255 | 0,349885 0,000804
Foreign Exchange Rates GARCH-skT
EUR/USD (EC) 289 -1,459795 | -1,675273 | 0,000814 | 2,77% | 0,013261 | 0,498933 0,037046
GBP/USD (BP) 289 -1,342207 | -1,544417 | 0,002941 | 2,08% | 0,109574 | 0,613341 0,244670
CAD/USD (CD) 289 -1,399029 | -1,617769 | 0,005508 | 1,73% | 0,260869 | 0,064120 0,095770
Part B. AR(1)-HAR-RV-skT
Number Independe -
of 10-step Observed . Conditional
Average | Average | Average R Kupiec nce
Index ahead VaR ES MSE Exception p-value | Christoffe Cgverage
VaR Rate Christoffersen
forecasts rsen
Stock Indices AR(1)-HAR-RV-skT
S&P500 290 -2,158911 | -2,471835| 0,089942 | 3,10% | 0,003940 | 0,446834 0,011736
EurostocXX50 294 -2,908882 | -3,316504 | 0,188173 | 3,06% | 0,004407 | 0,450053 0,013047
FTSE100 291 -2,342712 | -2,677232 | 0,127544 3,44% 0,001086 | 0,397975 0,003364
Commodities AR(1)-HAR-RV
HG (Copper COMEX) 289 -3,791532 | -4,334332 | 0,107054 | 2,42% | 0,040391 | 0,554799 0,102788
SV (Silver COMEX) 289 -4,311206 | -4,928599 | 0,319464 4,84% 0,000002 | 0,701767 0,000013
GC (Gold COMEX) 289 -2,460248 | -2,812279 | 0,045025 | 4,50% | 0,000012 | 0,267495 0,000037
Foreign Exchange Rates AR(1)-HAR-RV
EUR/USD (EC) 289 -1,333491 | -1,522888 | 0,002357 3,46% 0,001046 | 0,342256 0,002958
GBP/USD (BP) 289 -1,258021 | -1,436047 | 0,000618 | 2,08% | 0,109574 | 0,613341 0,244670
CAD/USD (CD) 289 -1,353754 | -1,544206 | 0,003655 | 1,38% | 0,538860 | 0,737114 0,782573

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 1% significance level.

*The bold fond of MSE column denotes the lowest value for 1% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 1% significance level.

As the period of forecasting increases far ahead to the future, and particularly,
in this occasion of the 99% of ten-days-ahead, we led to the inference that these two
models; GARCH and HAR, do not forecast Value at Risk with the most appropriate
way, combining inter-day data for the former model and for the latter one intra-day
data (with realized volatility), let alone using the RV as an exogenous parameter for
HAR specification. In more details, AR(1)-HAR-RV-skT model for 10-days-ahead
does not appear to overperform the AR(1)-GARCH(1.1)-skT model for almost all the
nine assets. As Table 10 presented, the category of Stocks and Commodities are
getting worse by using the application of HAR-RV model in order to estimate the
VaR measure. On the other hand, GARCH faced the rejection of Kupiec procedure
only at FTSEqo stock index and at two out of the three COMEX indices. As a result,
GARCH is preferable model, comparing to HAR for the 10-steps-ahead VaR***, and
not to mention the fact that Stocks category plays a quite important role with GARCH
forecasting rather than HAR. Almost for the same reasons, Christoffersen’s values are
better and of course, not rejected, at the GARCH specification. Moreover, the
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observed exception rates of GARCH and especially for the Stocks, is similar enough
to the expected range of 1%.

Table 11: 20-step-ahead VaR*” and ES modeling results.

Table 11: 20-Step-ahead VaR and ES Modeling Results (99%6)
Part A. GARCH-skT
Number
of 20-step- Avera Observed . Independe Conditional
Index ahead ge | Average | Average Exception Kupiec nce Coverage
VaR ES MSE p-value | Christoffe h
VaR Rate rsen Christoffersen
forecasts
Stock Indices GARCH-skT
S&P500 145 -2,884930 | -3,542076 | 0,092655 | 2,07% 0,25827 | 0,036982 0,059928
EurostocXX50 147 -3,817402 | -4,624643 | 0,211576 | 1,36% 0,67993 | 0,813661 0,893256
FTSE100 145 -2,993936 | -3,685127 | 0,036307 | 2,76% 0,08114 | 0,632562 0,194896
Commodities GARCH-skT
HG (Copper COMEX) 144 -4,282625 | -5,025230 | 0,149057 | 3,47% | 0,020459 | 0,143264 0,023344
SV (Silver COMEX) 144 -5,265473 | -6,177768 | 0,010146 3,47% 0,020430 | 0,547177 0,056779
GC (Gold COMEX) 144 -2,880967 | -3,354845 | 0,097697 | 3,47% | 0,020430 | 0,143264 0,023315
Foreign Exchange Rates GARCH-skT
EUR/USD (EC) 144 -1,481211 | -1,708530 | 0,000427 | 2,78% | 0,079897 | 0,631340 0,192314
GBP/USD (BP) 144 -1,363087 | -1,575497 | 0,005683 | 2,08% | 0,257866 | 0,719908 0,494416
CAD/USD (CD) 144 -1,429585 | -1,666978 | 0,018167 | 1,39% | 0,663893 | 0,811726 0,884455
Part B. AR(1)-HAR-RV
Number
of 1-step- Observed . Independe Conditional
Index ahead Average | Average MSE Exception Kupiec nee Coverage
VaR ES p-value | Christoffe .
VaR Rate rsen Christoffersen
forecasts
Stock Indices AR(1)-HAR-RV
S&P500 145 -2,147815 | -2,460266 | 0,275627 | 2,76% | 0,080162 | 0,080050 0,046759
EurostocXX50 147 -2,883045 | -3,295188 | 0,398223 4,08% 0,004857 | 0,220042 0,008932
FTSE100 145 -2,313073 | -2,640589 | 0,068693 | 4,14% | 0,004551 | 0,470031 0,013763
Commodities AR(1)-HAR-RV
HG (Copper COMEX) 144 -3,750312 | -4,279910 | 0,241818 | 3,47% | 0,020459 | 0,143264 0,023344
SV (Silver COMEX) 144 -4,293261 | -4,895013 | 0,061314 | 6,25% | 0,000020 | 0,271359 0,000062
GC (Gold COMEX) 144 -2,445660 | -2,797862 | 0,098816 4,17% 0,004432 | 0,225305 0,008362
Foreign Exchange Rates AR(1)-HAR-RV
EUR/USD (EC) 144 -1,342047 | -1,532244 | 0,000273 | 3,47% | 0,020459 | 0,547177 0,056850
GBP/USD (BP) 144 -1,255806 | -1,429632 | 0,003698 | 1,39% | 0,663893 | 0,811726 0,884455
CAD/USD (CD) 144 -1,351755 | -1,544205| 0,010931 | 2,08% | 0,257866 | 0,719908 0,494416

*The red color indicates rejection of the null hypothesis that the backtesting criterion is accurate; taking into
consideration that red value is smaller than 1% significance level.

*The bold fond of MSE column denotes the lowest value for 1% significance level.
*The bold fond of observed exception rate column denotes the most suitable value around 1% significance level.

Finally for the 20-steps-ahead of 99% VaR, there arose a clear-cut answer to
the question of which of the two proposed models forecast losses of each portfolio
more accurately. It is obvious, as we can see at Table 11 that the GARCH model is
superior to the HAR specification, because the observed violation rates of all the nine
assets from Stocks, Commodities and Exchange Rate classes are statistically different
from the expected violation rate of 1%, according to the results of Kupiec test.
Additionally, the results of Christoffersen test indicate that for GARCH model all the
assets are independently distributed, by checking Christoffersen test with one and two
degrees of freedom. Moreover, HAR-RV rejected the backtesting procedure null
hypothesis both for Kupiec and Christoffersen values at EurostoXXso, FTSEg0, Silver
(SV) and Gold (GC). The HAR model for FOREX assets seems to be better and
forecast more accurately the VaR and ES rather than the forecasts of Stocks and
Commodities. As far as the column of the observed exception rate of Table 11 is
concerned, we led to the inference that these percentages for both models suggest a
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widespread underestimation of the true Var figure, due to the fact that the true VaR
presents high divergences from the observed one. Therefore, it is essential to take into
consideration that at this procedure we forecast VaR for 20-days-ahead and as a
consequence, the out-of-sample data have been reduced from 2900 to 144
observations, at the end. So, the high observed exception rates should not be
considered as a serious drawback. The innovative part of this research is the
superiority of the simple GARCH application rather than HAR for the 10-steps and
20-steps-ahead.
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Chapter 4: Conclusion and Results

A widely common question with lots of interest is triggered through the financial
literature and describes which model is the most appropriate to forecast the asset
returns’ volatility, particularly as the forecasting time horizon lengthens. It is well-
known that investors are interested mainly in calculating Value-at-Risk (VaR) and
forecasting volatility. Through this direction, the issue of choosing one superior
model among all the potential models for all cases is complicated enough, because the
results of many researches are confusing and conflicting. This happens as there is not
a specific model that is deemed as adequate for all financial datasets, sample
frequencies and applications, as well.

This study examines whether an intra-day or an inter-day model generate the
most accurate forecasts for different datasets, among the 3 different asset categories; 3
stock indices (S&Psoo, EurostoXXsg, FTSE100), 3 commodities (HG-Copper COMEX,
SV-Silver COMEX, GC-Gold COMEX) and 3 Foreign Exchange Rates of Dollar
(EUR/USD, GBP/USD, CAD/USD), under the framework of two financial model
applications. | have been used the AR(1)-GARCH model followed by the skewed
Student-t distribution and finally, the AR(1)-HAR-RV model followed again by the
skewed Student-t distribution. As far as the methodology of each of the two models,
there is a detailed description at the Subsections 3.2 and 3.3 of 3" Chapter. The data
used, capture a time horizon from 3™ of January, 2000 to 5" of August, 2015 and
were conditioned to remove any non-trading days. By using different sample periods
of out-of-sample observations, it will be more easily to investigate whether the risk
management techniques are robust across various forecasting horizons. Furthermore,
this procedure ensures that the observations of each sample would not repeat. As a
result, the empirical analysis of this thesis presents forecasts at the 95% and 99%
confidence level, for 1-day-ahead, 10-days-ahead and 20-days-ahead.

The modeling results suggest that the optimal model varies from one index to
another and it depends on each forecasting horizon. To be more specific, as we can
observe in Table 12 and taking into consideration all the above empirical results, there
are different inferences for each period. It is clear that for one-step-ahead VaR, the
combination of an autoregressive model for realized volatility HAR-RV model
generates competitive VaR forecasts both for 95% and 99% confidence level, but just
only for the one-day-ahead estimation. The superiority of the HAR-RV model for the
one-step-ahead VaR forecasts, with a variety of different data frameworks (stocks,
commodities and exchange rates), answer affirmatively to the question if the one-day-
ahead volatility can be better estimated with a model using intra-day data rather than
with a model using daily data.

Table 12: Pivot table of the final results.

1-step-ahead 10-step-ahead | 20-step-ahead
95% AR(1)-HAR-RV-skT | AR(1)-GARCH-skT | AR(1)-GARCH-skT
99% AR(1)-HAR-RV-skT | AR(1)-GARCH-skT | AR(1)-GARCH-skT

As far as the 10-steps and 20-steps-ahead forecasts are concerned, the results
are definitely opposite from the one-step-ahead. In this occasion, the procedure to
forecast daily volatility based on HAR-RV specification does not seem to
overperform the VaR measure estimated by GARCH model both at 10-steps and 20-
steps-ahead. In other words, GARCH model predicts more accurately and more
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effectively the losses of a portfolio when the time horizon of the estimation increases.
This fact is in line with the literature, as a number of papers indicate that using intra-
day data does not help when the criteria are based on daily frequency (Angelidis &
Degiannakis, 2008). As a result, a Realized Volatility model, such as the AR(1)-HAR-
RV, will not be able to transfer at risk managers all the appropriate information they
need to calculate Value-at-Risk at high accuracy as the forecasting period lengthens.

Although HAR-RV specification incorporates three primary volatility
components: the short-term with daily, the medium-term with weekly positions, and
the long-term with a characteristic time of one or more months (Corsi F. , 2002),
hence these models noticed not to forecast the long-term VaR adequately.
Particularly, the empirical results of this dissertation about HAR-RV, found to suffer
from excessive VaR violations, implying an underestimation of market risk for the
most of the asset categories. Problematic enough were the Stock indices and the
Commodities, in an attempt to use a Realized Volatility model in order to forecast the
VaR measures. This is illustrated by the fact that expect for the one-day-ahead HAR
forecasts that are quite satisfactory, at the other two time periods using HAR there
were many rejections of the null hypothesis of Backtesting procedure by Kupiec and
Christoffersen.

To summarize, the results indicate firstly that there is not a unique model for
all cases that can be deemed an adequate one, and therefore investors should be
extremely careful when they use one model in all cases. Secondly, from the empirical
example at the previous chapter, it emerged a new innovative inference; the choice of
AR(1)-GARCH(1,1), and in accordance to the literature, has been shown to produce
reasonable one-day and multiple-days-ahead VaR forecasts under the skewed
Student-t distribution, let alone and most importantly, across a variety of markets;
stocks, COMEX and FOREX, respectively. Finally, as the literature indicates, many
studies concluded that the use of a skewed instead of a symmetrical distribution for
the standardized residuals produces superior VaR forecasts. As a consequence, the
effects of the intra-day noise in the high frequency datasets are still an open area of
study and require further investigation. Undoubtedly, from now on it is an undeniable
fact that GARCH-skT specification is a safe model that predicts VaR adequately both
for 95% and 99%, as the Basel Committee imposed to, not only at daily basis as we
all know until this moment, but more importantly at 10-days and 20-days ahead.

60



References

Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts. International economic review, 885-905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). Modeling and forecasting
realized volatility (No. w8160). National Bureau of Economic Research.

Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & Diebold, F. X. (2006). Volatility and
correlation forecasting. Handbook of economic forecasting, 1, 777-878.

Andersson, F., Mausser, H., Rosen, D., & Uryasev, S. (2001). Credit risk optimization with
conditional value-at-risk criterion. Mathematical Programming,89(2), 273-291.

Angelidis, T., Benos, A., & Degiannakis, S. (2004). The use of GARCH models in VaR
estimation. Statistical methodology, 1(1), 105-128.

Angelidis, T., & Degiannakis, S. (2007). Backtesting VaR models: A two-stage
procedure. Journal of Risk Model Validation, 1(2), 1-22.

Angelidis, T., & Degiannakis, S. A. (2007). Econometric modeling of value-at-risk. New
Econometric Modeling Research.

Angelidis, T., & Degiannakis, S. (2008). Volatility forecasting: Intra-day versus inter-day
models. Journal of International Financial Markets, Institutions and Money, 18(5), 449-465.

Areal, N. M., & Taylor, S. J. (2002). The realized volatility of FTSE-100 futures
prices. Journal of Futures Markets, 22(7), 627-648.

Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (2002). Coherent Measures of Riskl. Risk
management: value at risk and beyond, 145.

Artzner, P. (1997). Applebaum, D.(2004). Lévy Processes and Stochastic Calculus
(Cambridge University Press). Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D.(1997).
Thinking coherently, Risk 10, pp. 68-71. Risk, 10, 68-71.

Basel Committee of Banking Supervision, B. C. O. B. (1996). Amendment to the Capital
Accord to Incorporate Market Risks. Basle, Switzerland, jan. 1996a.

Baillie, R. T. (1996). Long memory processes and fractional integration in
econometrics. Journal of econometrics, 73(1), 5-59.

Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized
autoregressive conditional heteroskedasticity. Journal of econometrics, 74(1), 3-30.

Baillie, R. T., & Morana, C. (2009). Modeling long memory and structural breaks in
conditional variances: An adaptive FIGARCH approach. Journal of Economic Dynamics and
Control, 33(8), 1577-1592.

Bernanke, B. S., & Kuttner, K. N. (2005). What explains the stock market's reaction to
Federal Reserve policy?. The Journal of Finance, 60(3), 1221-1257.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
econometrics, 31(3), 307-327.

Bollerslev, T., & Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and
inference in dynamic models with time-varying covariances. Econometric reviews, 11(2),
143-172.

61



Bollerslev, T., & Ghysels, E. (1996). Periodic autoregressive conditional
heteroscedasticity. Journal of Business & Economic Statistics, 14(2), 139-151.

Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long memory in stock
market volatility. Journal of econometrics, 73(1), 151-184.

Cai, Z., & Wang, X. (2008). Nonparametric estimation of conditional VaR and expected
shortfall. Journal of Econometrics, 147(1), 120-130.

Caporale, G. M., & Gil-Alana, L. A. (2010). Long memory and volatility dynamics in the US
Dollar exchange rate.

Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review,
841-862.

Christoffersen, P. F. (2011). Elements of financial risk management. Academic Press.

Chung, S. L., Tsai, W. C., Wang, Y. H., & Weng, P. S. (2011). The information content of the
S&P 500 index and VIX options on the dynamics of the S&P 500 index. Journal of Futures
Markets, 31(12), 1170-1201.

Clements, M. P., Galvdo, A. B., & Kim, J. H. (2008). Quantile forecasts of daily exchange
rate returns from forecasts of realized volatility. Journal of Empirical Finance, 15(4), 729-
750.

Corsi, F. (2004). A simple long memory model of realized volatility. Available at SSRN
626064.

Corsi, F., Mittnik, S., Pigorsch, C., & Pigorsch, U. (2008). The volatility of realized
volatility. Econometric Reviews, 27(1-3), 46-78.

Danielsson, J., & Morimoto, Y. (2000). Forecasting extreme financial risk: a critical analysis
of practical methods for the Japanese market. Institute for Monetary and Economic Studies,
Bank of Japan.

Degiannakis, S. (2004). Volatility forecasting: evidence from a fractional integrated
asymmetric power ARCH skewed-t model. Applied Financial Economics, 14(18), 1333-1342.

Degiannakis, S., Livada, A., & Panas, E. (2008). Rolling-sampled parameters of ARCH and
Levy-stable models. Applied Economics, 40(23), 3051-3067.

Degiannakis, S., Floros, C., & Dent, P. (2013). Forecasting value-at-risk and expected
shortfall using fractionally integrated models of conditional volatility: International
evidence. International Review of Financial Analysis, 27, 21-33.

Degiannakis, S., Dent, P., & Floros, C. (2014). A Monte Carlo Simulation Approach to
Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT
Specification. The Manchester School, 82(1), 71-102.

Degiannakis, S., & Floros, C. (2015). Intra-day realized volatility for European and USA
stock indices. Global Finance Journal.

Diebold, F. X., & Mariano, R. S. (2012). Comparing predictive accuracy.Journal of Business
& economic statistics.

Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market
returns and a new model. Journal of empirical finance, 1(1), 83-106.

Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a
new approach. Journal of econometrics, 73(1), 185-215.

62



Dionne, G., Duchesng, P., & Pacurar, M. (2009). Intraday Value at Risk (I\VVaR) using tick-by-
tick data with application to the Toronto Stock Exchange. Journal of Empirical
Finance, 16(5), 777-792.

Doornik, J. A., & Ooms, M. (1999). A package for estimating, forecasting and simulating
ARFIMA models: Arfima package 1.0 for Ox. Preprint, Erasmus University.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society,
987-1007.

Engle, R. (2004). Risk and volatility: Econometric models and financial practice. American
economic review, 405-420.

Engle, R. F., & Sun, Z. (2005). Forecasting volatility using tick by tick data.

Fernandez, C., & Steel, M. F. (1998). On Bayesian modeling of fat tails and
skewness. Journal of the American Statistical Association, 93(441), 359-371.

Fuertes, A. M., & OImo, J. (2012). Exploiting Intraday and Overnight Price Variation for
Daily VaR Prediction. Frontiers in Finance and Economics, 9(2), 1-31.

Fuertes, A. M., & OIlmo, J. (2012). The Role of High-Frequency Prices, Long Memory and
Jumps for Value-at-Risk Prediction. Long Memory and Jumps for Value-at-Risk Prediction
(May 29, 2012).

Giot, P., & Laurent, S. (2003). Value-at-risk for long and short trading positions.Journal of
Applied Econometrics, 18(6), 641-663.

Giot, P., & Laurent, S. (2004). Modeling daily value-at-risk using realized volatility and
ARCH type models. journal of Empirical Finance, 11(3), 379-398.

Giot, P. (2005). Market risk models for intraday data. The European Journal of
Finance, 11(4), 309-324.

Greene, W. H.(1997): Econometric Analysis.

Greene, W. H. (2008). The econometric approach to efficiency analysis. The measurement of
productive efficiency and productivity growth, 92-250.

Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic
Statistics, 23(4).

Hansen, P. R., Lunde, A., & Nason, J. M. (2005). Model Confidence Sets for Forecasting
Models.

Hansen, P. R., & Lunde, A. (2005, December). A forecast comparison of volatility models:
Does anything beat a GARCH(1,1)? Journal of Applied Econometrics, p. 873-889.

Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: a joint model for returns
and realized measures of volatility. Journal of Applied Econometrics, 27(6), 877-906.

Hendricks, D., & Hirtle, B. (1997). Bank capital requirements for market risk: The internal
models approach. Economic Policy Review, 3(4).

Kuester, K., Mittnik, S., & Paolella, M. S. (2006). Value-at-risk prediction: A comparison of
alternative strategies. Journal of Financial Econometrics, 4(1), 53-89.

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement
models. THE J. OF DERIVATIVES, 3(2).

63



Lambert, P., & Laurent, S. (2002). Modelling skewness dynamics in series of financial data
using skewed location-scale distributions. Lambert, S. Laurenty, 32.

Lambert, P., Laurent, S., & Veredas, D. (2012). Testing conditional asymmetry: A residual-
based approach. Journal of Economic Dynamics and Control, 36(8), 1229-1247.

Lopez, J. A. (1999). Methods for evaluating value-at-risk estimates. Economic review, 2, 3-
17.

Martens, M. (2002). Measuring and forecasting S&P 500 index-futures volatility using high-
frequency data. Journal of Futures Markets, 22(6), 497-518.

McMillan, D. G., & Kambouroudis, D. (2009). Are RiskMetrics forecasts good enough?
Evidence from 31 stock markets. International Review of Financial Analysis, 18(3), 117-124.

McMillan, D. G., & Ruiz, I. (2009). Volatility persistence, long memory and time-varying
unconditional mean: Evidence from 10 equity indices. The Quarterly Review of Economics
and Finance, 49(2), 578-595.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new
approach. Econometrica: Journal of the Econometric Society, 347-370.

Pagan, A. R., & Schwert, G. W. (1990). Alternative models for conditional stock
volatility. Journal of econometrics, 45(1), 267-290.

Sarma, M., Thomas, S., & Shah, A. (2003). Selection of Value-at-Risk models.Journal of
Forecasting, 22(4), 337-358.

Shao, X. D, Lian, Y. J., & Yin, L. Q. (2009). Forecasting Value-at-Risk using high frequency
data: The realized range model. Global Finance Journal, 20(2), 128-136.

Tang, T. L., & Shieh, S. J. (2006). Long memory in stock index futures markets: A value-at-
risk approach. Physica A: Statistical Mechanics and its Applications, 366, 437-448.

Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley & Sons.

Xekalaki, E., & Degiannakis, S. (2010). ARCH models for financial applications. John Wiley
& Sons.

Yamai, Y., & Yoshiba, T. (2005). Value-at-risk versus expected shortfall: A practical
perspective. Journal of Banking & Finance, 29(4), 997-1015.

64



Appendix

A) Types of Distributions and the Density Function of them

In an attempt to estimate the vector of the unknown parameters, the density function
is analyzed in the next paragraphs. The chosen density function, which was widely
applied in finance, was {z.}7_,. However, Engle (1986) in his seminal paper;
landmark for Risk Management, used the Standard Normal density function.

1

f(z) = p=e7%/2 (104)

Bollerslev (1987) introduced the Student-t Distribution, due to the need of
investigating fat-tailed financial assets. Its density function is given in the following
equation.

-(v+1)/2

. _ rr(w+1)/2) i
f(z;v) = r(w/2)Jnw=-2) (1 + u—z) (105)

where I'(.) is the gamma function. As the v tends to infinity, the Student-t tends to the
Normal distribution.

However, the Student-t distribution is not the only fat-tailed distribution available in
the literature. There is also the GED, Generalized Error Distribution, which was
introduced in 1923 by Subbotin and finally, applied in the ARCH framework by
Nelson (1991). Comparing to the Student-t distribution, GED is more flexible, as it
could include both fat and thin-tailed distributions. The density function of GED is the
following:

vexp —0.5|Zt//1|v
f(Zt;U; /1) = /12(1<+1/U)1"(U_1)) (106)

Where 1 = \/Z_Z/UF(U_l)F(3U_1) and v > 0 are the tail-thickness parameters. For
instance, for v = 2, z; is standard Normally Distributed, let alone for v < 2, the
distribution of z; has thicker tails than the normal one.

To conclude, there is another well-known distribution, that of skewed Student-t,
which was introduced by Fernandez and Steel (1998) and was applied by Lambert and
Laurent (2000) in the ARCH framework. Skewed Student-t distribution was
significant, because it had to do with both long and short trading positions. The
density function of skewed Student-t is:

r((w+1)/2) 2s szpbm 0\~ WtD/2

f(zi;v,9) = r(w/2)\Jr@w-2) (g+g-1)( to2 9 ‘ ) (107)
Where g is the asymmetry parameter, v > 2 denotes the degree of freedom of the
distribution, I'(.) is the gamma function, d;, =1if z, = —m/s and d, = —1
otherwise. Last but not least, Kuester (2006) noticed that there was substantial
improvement in predicting VaR by using an asymmetric fat-tailed distribution than
the normal one.
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B) The CAC40, DAX30 and FTSE100 stock index daily returns in the
period from July 10th, 1987 to June 30th, 2003.

Figure 23: CAC40, DAX30 and FTSE100 stock index daily returns in the period from July 10th, 1987
to June 30th, 2003.
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Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.19/1-24.
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Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.19/1-24.
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FTSE100
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Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.20/1-24.

C)The realized intra-day volatility and the relative one-day-ahead
forecasts of the FIAPARCH(1,1)-skT model for the CAC40 (July 20th
1995 — June 30th 2003), DAX30 (July 11th 1995 — June 30th 2003)
and FTSE100 indices (June 14th1995 — June 30th 2003).

Figure 24: The realized intra-day volatility and the relative one-day-ahead forecasts of the
FIAPARCH(1,1)-skT model for the CAC40 (July 20th 1995 — June 30th 2003), DAX30 (July 11th
1995 — June 30th 2003) and FTSE100 indices (June 14th 1995 — June 30th 2003).

CAC40

0.008

0.0064 |

0.004

0.002

Y A
L R T L

ity b |IV|IIIJ|I|
200 400 600 800 1000 |206 1400| 1600 1800

one-day-ahead vol ---- realized vol |

Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.21/1-24
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Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.22/1-24.

FTSE100

0.005

0.004 ]

0.003

0.002

0.001 4

NN
-kl MR AR AL
Talale P 1 TT T 111 T

| B T
600 800 1 ']2(XJ| 1400 © 1600 1800

0.000 ks st

[ —— onedayaheadvd  —--—- redizedvol |

Source: Degiannakis S. (2004), Volatility Forecasting: Evidence from a FIAPARCH-skT Model,
p.23/1-24.
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D)The closing values of indicators; S&Psy and Gold Commodity
through the years.

Figure 25: The closing values and moving averages of S&Psq_stock index from 1950 to 2012.
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Source: From the link (http://www.fool.com/investing/general/2015/12/04/are-the-sp-500s-best-stocks-
in-2015-still-worth-bu.aspx).

Figure 26: The closing values and moving averages of Gold commodity from 2009 to 2015.
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Source: From the link of National Center for Scientific Research

(http://www.cnbc.com/2015/12/03/unable-to-get-a-bid-gold-is-going-to-900-technician.html).

69


http://www.fool.com/investing/general/2015/12/04/are-the-sp-500s-best-stocks-in-2015-still-worth-bu.aspx
http://www.fool.com/investing/general/2015/12/04/are-the-sp-500s-best-stocks-in-2015-still-worth-bu.aspx
http://www.cnbc.com/2015/12/03/unable-to-get-a-bid-gold-is-going-to-900-technician.html

