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VOLATILITY MODELLING OF FINANCIAL MARKETS

Abstract

by Panagiotis Delis, Ph.D.
Panteion University

February 2022

Forecasting oil price volatility is considered of major importance for numerous stakehold-

ers, including, policy makers, industries and investors. The first study (Chapter 2) examines

and evaluates the main factors that oil price volatility forecasters should consider before con-

structing their forecasting models. Such factors are related to: i) direct vs iterated forecasts, ii)

the incorporation of continuous and jump components, iii) the importance of semi variance

volatility measures, and iv) OLS vs time-varying parameter (TVP) estimation procedures. We

evaluate the performance of these factors for both the realized and implied volatility measures

of the WTI crude oil price, based on statistical loss functions, as well as, their economic use.

The results show that depending on whether end-users are interested in forecasting the real-

ized or the implied volatility, the factors influencing the accuracy of forecasts are different.

In the third Chapter, we enhance the modelling framework by incorporating exogenous

information in the proposed models. Nowadays, it is noteworthy the fact that the global un-

certainty plays a major role to the economic outlook and more specifically the financial and

energy markets. In this study (Chapter 3), we focus on the impact of the various uncertainty



factors on the oil price volatility, which is considered crucial not only for the global economy

but also for the financial markets because of its financialization. However, uncertainty can

be captured by different factors, which provide dissimilar information to oil price volatility.

We categorize those factors to the following classes: Implied volatility indices, financial stress

indices and other indicators related to the uncertainty environment, such as economic pol-

icy uncertainty, geopolitical risk and business conditions. Our main findings provide strong

evidence that taking uncertainty indicators into account enhances the predictive accuracy of

oil price volatility at all forecasting horizons. Moreover, the results indicate that the Dynamic

Model Averaging (DMA) is considered significant for forecasting oil price volatility by com-

bining the different indicators of the three classes and giving the corresponding weight to the

model.

However, crude oil investors would be interested not only in maximizing their profits but

also in minimizing the risk of their portfolios, which could be managed by hedging the crude

oil portfolio in an efficient way. In this regard, the existing literature has studied the interrela-

tions between crude oil and other asset classes, including stock, foreign exchange markets and

market reflecting macroeconomic conditions focusing mainly on their returns. In this study

(Chapter 4), we concentrate on the time-varying correlation of the volatility measures of crude

oil and three asset classes using a dynamic conditional correlation (DCC) model. The main ob-

jective of this study is to examine the optimal portfolio weights, constructed by the variance-

covariance matrix, for portfolios comprised of the aforementioned volatility measures and to

identify whether the investors could benefit from the interactions of the WTI crude oil and the

three assets. The aim of this study is to focus on volatility and not on returns, since investors

and academics concentrate their attention to the volatility of crude oil recent years. The results

of the correlations indicate a time-varying behavior, which gives a signal to investors that they

have to re-balance their portfolios regularly in order to minimize their portfolios’ risk. Finally,



the findings show that the asset that offers higher opportunities for hedging the WTI crude

oil volatility is that of the U.S. T-bills, which represents the market related to macroeconomic

conditions.

Finally, Chapter 5 aims to investigate the predictive information of the daily crude oil re-

alized volatility on the U.S. economy. More specifically, oil price volatility has attracted the

attention of the academic community because of its crucial impact on the economic outlook.

However, there is a gap in literature with regard to the impact of crude oil price volatility on

special aggregates of industrial production. In this study (Chapter 5), we propose MIDAS mod-

els including different daily crude oil realized volatility measures in order to investigate their

impact in an out-of-sample analysis. For comparison reasons, we study the effect not only

of crude oil but also of other assets’ realized volatility, such as S&P500 index, U.S. dollar in-

dex and U.S. T-bills. Moreover, we set a group of monthly macroeconomic, oil-related and

uncertainty-related variables as predictors of the industrial production aggregates in order

to evaluate whether the impact of the daily realized volatility measures is significant or the

monthly predictors themselves offer adequate information. The results show that crude oil

realized positive semivariance can definitely provide higher forecasting performance in the

models used for producing energy-related industrial production measures, which is not the

case for the non energy-related ones.
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Chapter One

Thesis introduction

At the beginning of this journey the main goal was to better understand the evolution of the

realized volatility of a crucial for the economy market, namely the crude oil, over time. We,

first, tried to identify some key characteristics of the aforementioned market in order to incor-

porate them in the modelling framework we implemented. More specifically, crude oil prices

appear to be highly volatile and also subject to structural breaks. This holds true for the crude

oil volatility as well. Therefore, we thought that by applying suitable time-varying parameter

models and including uncertainty indicators as potential drivers of the crude oil volatility, the

forecasting performance of simple models could be enhanced, which is a combination of el-

ements that has not been investigated so far. A a later point in time, we aimed to investigate

the existence of potential hedging opportunities between crude oil volatility and other assets’

volatility, since it is considered of major importance for crude oil investors to minimize the risk

of their portfolios. In this regard, we had in mind that crude oil market has unique character-

istics and properties in comparison with the stock and foreign exchange markets and this fact

could justify an efficient hedging between crude oil and those asset classes. Finally, we had

as a main objective to show that crude oil realized volatility1 is information-rich for the U.S.

industrial production which is one of the main pillars for economic growth.

Summarizing the general aspects of the present dissertation, we mainly study the volatility
1We also investigated the performance of other assets’ realized volatility.
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of the crude oil market, which has attracted the attention of academics, investors and policy

makers. This happens due to the fact that the oil market is considered a highly profitable in-

vestment for investors’ and financial institutions’ portfolios. Moreover, oil price volatility can

drive uncertainty for energy companies or oil-intensive companies. Therefore, the entire eco-

nomic outlook through industrial production levels could be affected by oil price volatility,

which is one of the main features being investigated in this dissertation.

In the first chapter, the research question of what matters when developing oil price volatil-

ity forecasting frameworks is answered. According to this study, several static and dynamic

models are developed with different forecasting approaches for the generation of multi-step

ahead forecasts and implemented. The evaluation of the produced crude oil volatility forecasts

is conducted by using not only statistical loss functions but also trading strategies. The results

show that depending on whether end-users are interested in generating realized volatility (RV)

or implied volatility (IV) forecasts, the factors having influence on the forecasting accuracy are

different. More particularly, for RV, direct forecasting, which is based on time-varying parame-

ter (TVP) models could provide more accurate forecasts compared to the alternative modelling

frameworks. The forecasting performance is also enhanced when incorporating realized semi

variance measures in the right hand side of the regression’s equation. With regard to IV fore-

casts, TVP procedures seem to improve the forecasting performance of the applied models.

Finally, the results for the case of IV provide evidence that the continuous component and the

semivariance measures offer better forecasting gains in the longer run horizons.

It is noted that no exogenous variables are incorporated in the Chapter 2. The impact of

several factors of uncertainty on oil price volatility is investigated in the second study (Chap-

ter 3). This is an out-of-sample analysis that categorizes factors of uncertainty in the following

classes: IV indices, financial stress indices and other indicators related to the uncertainty en-

vironment and use them as potential drivers of oil price volatility. The main finding is that
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taking into consideration uncertainty factors helps to enhance the predictive accuracy of oil

price volatility at all forecasting horizons. In more detail, the use of Dynamic Model Averaging

(DMA) is considered significant for forecasting oil price volatility by combining the different

indicators of the three classes and giving the corresponding weight to the model. Our evalu-

ation framework includes the use of statistical loss functions and also one strategy of trading

the United States Oil Fund (USO), which confirm the high impact of the uncertainty factors on

oil price volatility.

Having focused on forecasting the crude oil volatility is considered useful for oil investors.

However, they would be really interested in minimizing the risk of their portfolios. Therefore,

in this dissertation, we study the existence of potential hedging opportunities between crude

oil price volatility and volatility measures of other assets from stock, foreign exchange markets

and the market that reflects macroeconomic conditions. In this specific study, which is main-

tained in Chapter 4, the focus is on the time-varying correlation of the volatility measures of

crude oil and three asset classes using a dynamic conditional correlation (DCC) model. The

main objective of this study is to examine the optimal portfolio weights, constructed from the

variance-covariance matrix, for portfolios comprised of the aforementioned volatility mea-

sures and to identify whether the investors could benefit from the interactions of WTI crude

oil and the three assets. The results of the correlations indicate a time-varying behavior, which

gives a signal to investors that they have to re-balance their portfolios regularly in order to min-

imize their portfolios’ risk. Finally, the findings show that the asset that offers higher opportu-

nities for hedging WTI crude oil volatility portfolio is that of U.S. T-bills, which represents the

market related to macroeconomic conditions.

As mentioned above, crude oil volatility is crucial for the economic outlook. In this study,

we focus on the impact of oil price volatility measures on the U.S. economy and more specif-

ically on special aggregates of industrial production. Due to the fact that oil price RV mea-
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sures are sampled at daily frequency (constructed by using intra-day data) and industrial pro-

duction at monthly frequency, a MIDAS modelling framework is used in order to investigate

the impact of RV measures when generating out-of-sample industrial production forecasts.

For comparison reasons, we study the effect of not only crude oil but also other assets’ re-

alized volatility, such as S&P500 index, U.S. dollar index and U.S. T-bills. Moreover, we set a

group of monthly macroeconomic, oil-related and uncertainty-related variables as predictors

of the industrial production aggregates in order to evaluate whether the impact of the daily RV

measures is significant or the monthly predictors themselves offer adequate information. The

results show that crude oil realized positive semivariance can definitely provide higher fore-

casting performance in the models used for producing energy-related industrial production

measures, which is not the case for the non energy-related ones.

Finally, We hope that we managed to provide an integrated modelling framework that fo-

cuses on the realized volatility of crude oil, which is found to be information-rich for the eco-

nomic outlook and therefore professional forecasters, investors and policy makers should take

the findings of this dissertation into account.
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Chapter Two

What matters when developing oil price

volatility forecasting frameworks?

2.1 Introduction

According to Elder and Serletis, 2010, oil price uncertainty exerts a great impact on the global

economy and a number of studies have shown that such uncertainty has important macroeco-

nomic effects (Ferderer, 1996; Kilian & Park, 2009). Moreover, crude oil prices have been highly

volatile in recent years, with prime examples the price swing observed during the Global Fi-

nancial Crisis of 2007-2009 and the oil price collapse period of 2014-2016. The aforementioned

claims render oil price volatility forecasts very important.

Accurate forecasts of crude oil price volatility are also important because of the financiali-

sation of the oil market, as Pen and Sevi, 2017 note. In addition Silvennoinen and Thorp, 2013

observe that the oil market is considered as a highly profitable investment for financial insti-

tutions’ portfolios. Furthermore, oil price volatility could drive uncertainty at higher level for

oil companies or oil-intensive industries, placing it as one of the most important factors for

oil risk management purposes. Such features place oil price volatility forecasts at the centre of

the policy makers’, oil-intensive industries’ and investors’ attention.

The advent of ultra-high frequency data (intra-day) offers the ability for the so-called real-

ized volatility (RV) to be estimated. Thus, models based on lower frequency returns have lost
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their appeal due to the fact that they are not capable of exploiting all the available information

in the dataset. Among the realized volatility modelling frameworks, one of the most popular

and widely used is the heterogeneous autoregressive (HAR) model proposed by Corsi, 2009.

The HAR model exploits the heterogeneity of market participants, which originates from the

difference in investment horizons. Recent literature has shown that HAR model is considered

the standard benchmark for forecasting volatility dynamics (Chen et al., 2010; Degiannakis &

Filis, 2017; Sévi, 2014).

Furthermore, given the importance of forecasting realized volatility, the literature focuses

on developing different approaches, which are, nevertheless, based on the HAR model. Re-

garding oil volatility forecasting, indicative recent studies are those of Klein and Walther, 2016,

F. Ma et al., 2018, Zhang and Wang, 2019 and Lin et al., 2020. Many studies enhance the

HAR model to capture the jump component in volatility, which is estimated by decompos-

ing quadratic variation into continuous and jump terms1. Some papers investigate whether

the jump components can provide higher forecasting accuracy in HAR-type models when re-

ferring to crude oil market. Sévi, 2014 and Prokopczuk et al., 2016 conclude that the decom-

position of quadratic variation into continuous component and jumps does not lead to higher

forecasting accuracy. In contrast, L. Liu et al., 2018 and F. Ma et al., 2018 find that incorpo-

rating an appropriate jump component can provide higher performance in forecasting real-

ized volatility of crude oil futures market2. Moreover, according to Patton, 2011, in the context

of stock market volatility, realized semi variance components provide useful information for

forecasting realized volatility with one part coming from the high-frequency returns and a part
1Barndorff-Nielsen and Shephard, 2006, Tauchen and Zhou, 2011 and Andersen et al., 2012 have proposed a

number of non-parametric tests to detect jumps.
2L. Liu et al., 2018 suggest that the decomposed jumps with a certain threshold can improve the forecasting

performance. F. Ma et al., 2018 conclude that proposed new variables, such as signed jump variations, have a

significant influence on the future volatility.
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from the negative high-frequency returns.

Most existing studies, which use HAR-type models to forecast oil price volatility, use con-

stant coefficients estimated by OLS method. However, time-variation in the parameters of

the HAR modelling framework is also an important consideration. This study is motivated

by Spiegel, 2008, who asks if academics could "produce an empirical model that allows for

economic changes over time that is also capable of determining the ’right’ parameter values

in time to help investors?" (p. 1454). This question is considered really important for the re-

searchers due to the fact that the issue of time-variation in coefficients might affect the results.

In general, coefficients may vary over time due to changes in monetary policies, in the institu-

tional framework and in market sentiments.

More specifically, a number of studies note that the statistical property of asset volatility

(e.g., volatility persistence) undergoes frequent structural breaks or switches between different

regimes due to extreme events and economic policies3. Therefore, the autoregressive coeffi-

cients that determine the impact of past volatility terms on current volatility can change over

time and this is one reason why we implement TVP models in the HAR-type structure. We also

follow a broad number of studies that find evidence of time-variation in the coefficients and

show that models, which take into consideration this issue, present better forecasting perfor-

mance than constant-parameter models4.

According to Wang et al., 2016, the existing HAR-type models are predictive regressions

with constant coefficients and they cannot capture changes in predictive relationships. The

most implemented TVP methodology in the literature relies on the work of Koop and Korobilis,

2012, which was first proposed by Raftery et al., 2010. This methodology is simple and offers
3For further details see Calvet and Fisher, 2004, Banerjee and Urga, 2005, C. Liu and Maheu, 2008 and Rapach

and Strauss, 2008.
4For further details see studies such as: Mcaleer and Medeiros, 2008 and Bollerslev et al., 2016.
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the ability to avoid MCMC-based Bayesian methods.

Using the TVP HAR-type models, one target of this study is to assess if the forecasting per-

formance of the models that will be estimated under the TVP modelling framework can outper-

form the simple HAR-RV estimated by OLS. However, it is noted that there is a large number of

TVP approximations, which use the Kalman filter for updating the observation and state equa-

tions. The latter process constitutes the structure of a dynamic model as West and Harrison,

1997 have analytically explained. Most of the published studies rely on the work of Koop and

Korobilis, 2012, since they use the dynamic model averaging (DMA) model, which is a model

that allows not only the parameters but also the regressors to change over time. In this case, we

allow coefficients to change over time in order to capture potential structural breaks without

taking into account changes of regressors, since no exogenous information is considered in

these forecasting models.

Furthermore, it is a challenging task to decide on the TVP approximation that provides

better forecasting performance. The TVP model proposed by Raftery et al., 2010 includes the

approximation of the forgetting factor. Nevertheless, Grassi et al., 2017 suggest that another

approximation, namely the standardized self-perturbed Kalman filter, proves to be a valid al-

ternative to online methods based on forgetting factors. The concept of this methodology is

that the measurement error variance enters directly in the updating step in a way that the up-

date of the state equation becomes endogenously determined by the amount of uncertainty

in the data. In this chapter, both approaches are implemented in order to fill the gap on this

concern. Moreover, in the case of the crude oil market, as far as we are aware, there is no pub-

lished study that provides realized and implied volatility forecasts of crude oil market under a

TVP modelling framework, which is a significant contribution of this study to the literature.

Another issue that we also investigate in this chapter is whether the forecasts of oil price

volatility have to be obtained from the direct or the iterated approach when referring to multi-
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step ahead forecasts. According to Marcellino et al., 2006, the iterated forecast entails the es-

timation of an autoregression, then iterating it upon that autoregression to obtain the mul-

tiperiod forecast. In contrast, the forecast based on the direct approach entails regressing a

multiperiod-ahead value of the dependent variable on current and past values of the variable.

Most studies which focus on forecasting realized and implied volatility use the direct approach

when forecasting multiple steps ahead. The only exception is the work of Degiannakis and

Filis, 2017, who provide iterated forecasts in order to forecast crude oil realized volatility with-

out, though, comparing them with forecasts provided by the direct approach which is inves-

tigated in this study. Moreover, to the best of our knowledge, there is no study that provides

iterated forecasts through TVP-HAR models. In this study, the different explanatory compo-

nents are separately modeled (e.g. jump component, realized semi variance components),

which is in line with the study of Busch et al., 2011, in order to provide the iterated forecasts.

It is important to note that the iterated method is prone to bias if the one-step ahead model

is misspecified. In addition, there are contradictions among different studies for choosing the

most efficient forecasting method5. This study provides a thorough assessment as to which is

the most efficient way, when it comes to direct or iterated forecasts.

Interestingly enough, all the aforementioned studies are interested in forecasting the real-

ized volatility measure and not the implied volatility. However, it is widely known that volatility,

which is implied by an option’s price, is considered as capturing the anticipated asset volatility

over the remaining life of the relevant option6. Thus, in this paper, we implement this forecast-

ing framework for both the realized and implied volatility measures of the WTI oil prices.

Overall, this study brings together all aforementioned factors related to the most appropri-
5Cox, 1961 suggests that direct multi-period forecasts can be more efficient than iterated forecasts.
6Early studies have shown that implied volatility is interpreted as an efficient volatility forecast (Harvey & Wha-

ley, 1992).
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ate modelling framework, thus, it investigates what really matters when obtaining multi-step

ahead (1-day up to 66-days ahead) oil price realized and implied volatility forecasts. Hence,

this chapter offers a comprehensive forecasting framework in this line of research.

The findings show that for the WTI realized volatility forecasts it is really important to in-

clude the realized semi variance measures in the HAR models by using the TVP estimation

methodology, which improves the forecasting performance of the models. The choice of di-

rect forecasting procedure also improves the WTI realized volatility predictions. By contrast,

the decomposition of the realized volatility into its continuous and jump components does

not enhance the forecasting performance of the models. In the case of OVX, we also find that

the TVP outperforms the rest of the competing models, although this is evident only based

on the economic evaluation of the forecasts. In addition, for the long-run horizons, we also

show that the information obtained from the continuous component and the semi variance

measures of the WTI realized volatility improves the OVX forecasting performance.

The remainder of the chapter is structured as follows. In Section 2.2 the calculation of the

different realized volatility measures, which have been included in the modelling specifica-

tions is described. In Section 2.3 we describe the data used in the study. In Sections 2.4 and 2.5

we present the modelling and forecasting frameworks, respectively. Section 2.6 details the sta-

tistical and economic evaluation framework, whereas Section 2.7 discuss the out-of-sample

forecasting results. Finally, Section 2.8 concludes the study.

2.2 Estimating realized volatility

To measure the daily quadratic variation using intra-day data, a widely known realized mea-

sure is used, the so-called realized volatility (RV). Thus, let the intra-day returns be denoted by

rt , j = log
( pt , j

pt , j ´1

)
, where pt , j is the oil price, for j = 1,2, . . . , M , denoting the time of observation
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within a particular day, and t = 1,2, . . . ,T represents the number of trading days. According

to Andersen and Bollerslev, 1998, the daily realized volatility, DRVt , is defined as the sum of

squared intra-day returns:

DRVt =
g

f

f

e

M
ÿ

j=1

r 2
t , j . (2.1)

The realized volatility converges to the integrated volatility as the sampling frequency and the

number of intra-day intervals (M) approach infinity. In this chapter, we rely on Hansen and

Lunde, 2005 and we work with annualized realized volatility series, which are calculated as:

RVt =
?

252 DRVt . (2.2)

Barndorff-Nielsen and Shephard, 2006 prove that the integrated volatility can be estimated

by the realized bipower variation, RBVt , as:

RBVt =
?

252 µ´2
1

M

M ´ 2

M
ÿ

j ´3

|rt , j ´2||rt , j |, (2.3)

whereµ1 =
?

2/π and M/(M ´2) denotes an adjustment for the sample size. Barndorff-Nielsen

and Shephard, 2006 and Huang and Tauchen, 2005 apply the z-statistic in order to identify the

discontinuous jump variation:

Zt =
?

M
(RVt ´ RBVt )RV ´1

t

(µ´4
1 +2µ´2

1 ´ 5)max(1, RT Qt

RBV 2
t

)
, (2.4)

where RT Qt is the realized tri-power quarticity:
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RT Qt =
?

252 Mµ´3
4/3(

M

M ´ 4
)

M
ÿ

j=4

|r 4/3
t , j ´4||r 4/3

t , j ´2||r 4/3
t , j |, (2.5)

where µ4/3 = 22/3Γ(7/6)Γ(1/2)´1. The daily discontinuous jump variation J (d)
t can be defined

by

J (d)
t = I (Zt >φα)(RVt ´ RBVt ), (2.6)

where I (.) is the indicator function, which identifies the significance of the Zt statistic in excess

of a given critical value of the Gaussian distribution φα.

Additionally, the continuous sample path variation C (d)
t can be calculated by

C (d)
t = I (Zt ďφα)RVt + I (Zt >φα)RBVt , (2.7)

where I(*) is an indicator function and α equals 0.99.

Barndorff-Nielsen et al., 2010 propose the daily realized semi variance, which can capture

the variation solely from negative or positive returns.The daily positive realized semi variance

estimator, RSV (d+)
t , is calculated as:

RSV (d+)
t =

?
252

M
ÿ

j=1

I (rt , j ě 0)r 2
t , j . (2.8)

Similarly, the daily negative realized semi variance estimator, RSV (d´)
t , is defined as:

RSV (d´)
t =

?
252

M
ÿ

j=1

I (rt , j < 0)r 2
t , j . (2.9)
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2.3 Data

The dataset of this study includes both daily and tick-by-tick transaction data for the imple-

mentation of the forecasting procedure. More specifically, the WTI realized volatility estima-

tor is calculated using tick-by-tick transaction data of the front-month futures contracts for

the WTI crude oil. The tick-by-tick transaction data are used to construct the time series at the

different sampling frequencies from 1 minute up to 120 minutes. The 10 minutes sampling fre-

quency has been chosen, since minimizes the autocovariance bias induced by microstructure

noise issue.

In this study, we also use OVX as another oil volatility measure since it has become an im-

portant instrument for trading oil price volatility and has attracted the attention of investors.

More specifically, OVX is introduced by the Chicago board of options exchange (CBOE) in or-

der to measure the market’s expectation of 30-day volatility. In more detail, the CBOE Volatility

Index methodology that has been applied for the OVX computation uses options on the United

States Oil Fund with a wide range of strike prices. It is also important to note that OVX values

are annualized to cover the upcoming 12-month period, as reported by the CBOE, by annu-

alizing the interpolated value7, taking its square root and expressing the result in percentage

points, which is consistent with the calculation of the annualized realized volatility measure

used in this chapter. Regarding OVX, the data are readily available at a daily frequency. More-

over, the common sample for both WTI realized volatility and OVX is from January 4, 2010

to October 30, 2017 and the number of observations is 1971 (trading days). The source of the

obtained tick-by-tick data is TickData, whereas the data for the OVX are obtained from CBOE8.
7The CBOE Volatility Index methodology is applied for the calculation of the OVX by interpolating two weighted

sums of options midquote values, which represent the expected variance of the Euro to Dollar exchange rate up to

two option expiration dates that bracket a 30-day time horizon.
8Please find the data using the following link: https://www.cboe.com/us/indices/dashboard/ovx/.
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Figure 2.1 portrays the annualized realized volatility and OVX series. It is apparent that

high values of volatility are observed in the late 2014 - early 2015 period due to the sudden

decline of the oil prices. Moreover, from the descriptive statistics of those two variables, which

are reported in Table 2.1, it is observed that the mean of OVX is higher than that of the re-

alized volatility. Furthermore, we observe that realized volatility is more volatile with higher

coefficient of variation than that of OVX. Similar results can be also observed for the variables

log(RV) and log(OVX).
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Descriptive statistics

Series RV log(RV) OVX log(OVX)

Mean 28.3834 3.2557 33.7542 3.4693

Median 25.6305 3.2438 32.4500 3.4797

Maximum 99.0252 4.5954 78.9700 4.3691

Minimum 7.09270 1.9591 14.5000 2.6742

Std. Dev. 13.0343 0.4173 10.6991 0.3185

CV 0.4592 0.1282 0.3170 0.0918

Skewness 1.63346 0.2498 0.70935 -0.1407

Kurtosis 6.79648 3.0568 3.58926 2.7073

Daily Obs. 1971 1971 1971 1971

Table 2.1 This table presents the descriptive statistics of the volatility series. CV =
coefficient of variation. All series, RV, log(RV), OVX and log(OVX), are stationary ac-
cording to the ADF unit root test.
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2.4 Modelling framework

2.4.1 Naive model specification

A simple Random Walk (RW) without a drift is considered as this naive model and it is written

as:

l og (RVt ) = l og (RVt´1)+εt , (2.10)

where RVt is the annualised realized volatility of the WTI crude oil at day t and εt is a white

noise.

2.4.2 Simple HAR-type model specification

In this study, we employ the HAR modelling framework by Corsi, 2009, who proposes an ad-

ditive cascade model of realized volatility aggregated at different time horizons. It could be

also considered as a simple AR-type model in the realized volatility that includes volatilities

realized over different time horizons and is thus called heterogeneous autoregressive (HAR)

model. One of its advantages is its simplicity. The HAR model provides a flexible method to

fit the partial autocorrelation function of the empirical data with a step function and it can be

easily estimated by simple OLS. Furthermore, the HAR model captures the persistence prop-

erties of financial data, as well as, long-memory models, such as fractionally integrated one,

even if it does not belong to the class of long-memory processes. The basic idea is that market

participants have a different perspective of their investment horizon. Typically, three compo-

nents are used with daily, weekly and monthly length.

Although the HAR model introduced by Corsi, 2009 is specified in terms of levels of realized
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volatility, we follow the literature, which considers models of the log of realized volatility 9. Eq.

(2.11) presents the HAR-RV model:

log (RVt ) = â(t )
0 + â(t )

1 log (RV (d)
t´1)+ â(t )

2 log (RV (w)
t´1)

+ â(t )
3 log (RV (m)

t´1)+et ,

(2.11)

where et is the residual term and â(t )
0 , â(t )

1 , â(t )
2 , â(t )

3 are the estimated parameters. Furthermore,

the components are calculated as: log (RV (d)
t´1) = log (RVt´1); log (RV (w)

t´1) =
(
5´1 ř5

k=1 l og (RVt´k )
)
;

log (RV (m)
t´1) =

(
22´1 ř22

k=1 l og (RVt´k )
)
, which is in line with Corsi and Renò, 2012.

We also investigate the impact of the decomposition of quadratic variation to continuous

and jump components in forecasting realized volatility. Thus, we replace in the structure of

the simple HAR model the RV components with the continuous components10. The HAR-C

model is written as:

l og (RVt ) = â(t )
0 + â(t )

1 log (C (d)
t´1)+ â(t )

2 l og (C (w)
t´1)

+ â(t )
3 log (C (m)

t´1)+et .

(2.12)

Moreover, according to Patton and Sheppard, 2015, the model HAR-RSV uses the struc-

ture of the HAR model over negative and positive RSV. This model (HAR-RSV) is described as

follows:

log (RVt ) = â(t )
0 + â(t )

1 l og (RSV (d+)
t´1 )+ â(t )

2 log (RSV (w+)
t´1 )

+ â(t )
3 log (RSV (m+)

t´1 )+ â(t )
4 l og (RSV (d´)

t´1 )+ â(t )
5 log (RSV (w´)

t´1 )

+ â(t )
6 log (RSV (m´)

t´1 )+et .

(2.13)

9Using log transformed RV data is closer to being normally distributed, and there is also no need to impose any

non-negativity restrictions on the fitted and forecasted volatility.
10It should be noted here that in the HAR-C model we had initially included the jumps components, as well,

i.e. we developed the HAR-CJ model. However, it was found that the HAR-CJ model does not provide additional

predictive information compared to the HAR-C model. This is suggestive of the fact that the jump components

do not provide incremental forecasting gains, as also noted by the recent literature (Prokopczuk et al., 2016; Sévi,

2014).
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Before completing this part, it would also be convenient to condense the representation

of the aforementioned models somewhat. Thus, xt =
[
1, log (RV (d)

t´1), log (RV (w)
t´1), l og (RV (m)

t´1)
]

is defined as the (1 ˆ 4) vector of HAR-RV components. Also define yt = log (RVt ). Then, the

following equation replaces Eq. (2.11)11:

yt = xtαt +εt , (2.14)

whereαt =
[
a(t )

0 , a(t )
1 , a(t )

2 , a(t )
3

]1 is the corresponding parameter vector and εt is the error term.

2.4.3 Estimation of time-varying parameter HAR-type models

It is observed that the autoregressive coefficients that determine the impact of past volatility

terms on current volatility can change over time, mainly because of frequent structural breaks.

Hence, the detection of potential structural breaks is an important consideration in the fore-

casting exercise. Thus, we apply the iterated cumulative sums of squares (ICSS) algorithm for

testing multiple breaks in the unconditional variance of crude oil prices. As shown in Table

2.2, seven breaks were detected12. From Figure 2.2, which portrays the WTI returns and the

detected structural breaks, we observe that most of the breaks appear after 2014, which is a

highly volatile period for the crude oil market.

11The HAR-RV model is presented for simplicity reasons. The similar framework can be applied to each of the

aforementioned models.
12Inclán and Tiao, 1994 propose a cumulative sum of squares statistic in order to test the null hypothesis of a

constant unconditional variance against the alternative hypothesis of a break in the unconditional variance.
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Structural breaks

Break points Time period Standard deviation

7 January 5, 2010 - October 28, 2011 2.0111

October 29, 2011 - November 21, 2012 1.6970

November 22, 2012 - August 14, 2014 1.0919

August 15, 2014 - November 28, 2014 1.9547

November 29, 2014 - January 6, 2016 2.7559

January 7, 2016 - March 18, 2016 4.2456

March 19, 2016 - December 19, 2016 2.2992

December 20, 2016 - October 30, 2017 1.5689

Table 2.2 The structural breaks in the volatility of crude oil prices as detected by the
ICSS algorithm.
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The detection of these structural breaks motivates the use of the TVP methodology, so as to

investigate its capability to improve the forecasting ability of the HAR models. In this section,

the specification of TVP parameter HAR models are presented13. We present the procedure

for the case of the HAR-RV model only, since the same approach is followed for all remaining

models. The specification of the HAR-RV model under the TVP specification of Grassi et al.,

2017 can be written as:

yt = xtαt +εt for εt „ N (0, Ht ), (2.15)

αt =αt´1 +ut for ut „ N (04ˆ1,Σut ). (2.16)

The vector αt represents the time-varying regression coefficients. It is also assumed that

the error sequences εt and ut are internally and mutually independent at all of the leads and

lags. The model given by Eq. (2.15) and Eq. (2.16) is considered an attractive one that provides

for time-varying parameters in contrast to traditional, constant coefficient models (even when

the aforementioned models provided by Eq. (2.11), Eq. (2.12) and Eq. (2.13) are estimated

recursively).

There are studies proposing models that capture potential structural breaks. For exam-

ple, Luo et al., 2020 construct the Infinite Hidden Markov (IHM) models, which are capable of

capturing potential structural breaks in oil price volatility. Those models have been also imple-

mented by Luo et al., 2019 in order to forecast the realized volatility of agricultural commodity

futures. It is important to mention that the proposed IHM process is estimated by using the

Markov chain Monte Carlo (MCMC) posterior sampler, which makes the whole forecasting

framework more complicated because of the large number of parameters.
13More details for the whole procedure analyzing each step can be found in the Appendix
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Moreover, according to Koop and Korobilis, 2012, the estimation of the dynamic model av-

eraging that uses combinations of TVP models is considered computationally infeasible using

MCMC-based Bayesian methods. Thus, one simple approximation that they implement is the

forgetting factor λ in order to avoid estimating Σut . However, Grassi et al., 2017 suggest the

standardized self-perturbed Kalman filter, which avoids the calibration of a design parameter

as the perturbation term is scaled by the amount of the uncertainty in the realized volatility

data in this study. The difference between the aforementioned studies is that they propose

alternative ways to process the new information at each point in time, where the process of

the updating equation of the state covariance matrix is modified by using some approxima-

tions. In detail, the perturbation term that is included in the updating equation of the state

covariance matrix is weighted by the measurement error variance estimate. Thus, we rely on

the latter approximation, namely the standardized self-perturbed Kalman filter, which was

initially proposed by Park and Jun, 199214.

2.5 Forecasting realized volatility and oil price implied volatility

index

It is important to note here that the same forecasting methodology is implemented for both

WTI realized volatility and OVX. Therefore, OVX forecasts are generated by replacing RV with

OVX in the corresponding equations of Section 2.4. Moreover, most studies implement a direct

forecasting approach mainly for practical reasons. According to Nonejad, 2017, obtaining it-

erated forecasts is not feasible given the computational time it takes to generate iterated fore-
14In this study, the TVP methodology proposed by Raftery et al., 2010, which relies on the approximation of the

forgetting factor has been also implemented but it is outperformed by the TVP HAR model with the standardized

self-perturbed Kalman filter.
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casts. Since we concentrate on the forecasting performance of the models, both direct and

iterated forecasting procedures are implemented in order to assess which method provides

more accurate out-of-sample forecasts.

Moreover, one important note is that the multi-step ahead forecasting procedure of this

study is based on obtaining point forecasts since they are more useful for traders. Thus, yt+h

is defined as yt+h = log (RVt+h).

2.5.1 Direct forecasting procedure

The direct forecasting procedure for obtaining out-of-sample forecasts of realized volatility

is based on Buncic and Gisler, 2016. In particular, distinct regressions are applied for each

horizon. More specifically, the regression is written as follows:

yt+h = xtα
(h) +εt+h . (2.17)

The direct forecast is xt α̂
(h)
t , where α̂(h)

t is an estimate of α(h) that only relies on data up to

period t .

2.5.2 Iterated forecasting procedure

The HAR-RV 1-day-ahead iterated forecast is written as:

RVt+1|t = exp(â(t )
0 + â(t )

1 log (RV (d)
t )+ â(t )

2 log (RV (w)
t )

+ â(t )
3 log (RV (m)

t )),

(2.18)

where log (RV (d)
t ) = log (RVt ), log (RV (w)

t ) =
(
5´1 ř5

k=1 log (RVt´k+1)
)

and

log (RV (m)
t ) =

(
22´1 ř22

k=1 l og (RVt´k+1)
)
.

Due to the fact that the logarithmic transformation is used in the models, the error variance

term 0.5σ2
ϵ should be incorporated, but it has marginal effect on the results.
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The s-days-ahead iterated forecasts of the HAR-RV model, for s ě 2 are computed as fol-

lows:

RVt+s|t = exp(â(t )
0 + â(t )

1 log (RV (d)
t ,s )+ â(t )

2 l og (RV (w)
t ,s )

+ â(t )
3 log (RV (m)

t ,s )),

(2.19)

where log (RV (d)
t ,s ) = log (RVt+s´1|t ), log (RV (w)

t ,s ) =
(
s´1 řs´1

k=1 log (RVt´k+s|t )

+ (5 ´ s)´1 ř5
k=s log (RVt´k+s)

)
and log (RV (m)

t ,s ) =
(
s´1 řs´1

k=1 l og (RVt´k+s|t )

+ (22 ´ s)´1 ř22
k=s l og (RVt´k+s)

)
, which are used for s-days-ahead forecasts.

It is important to note that for the 1-day ahead forecast of the RV, the models use data that

belong to the information set at time t . However, for the 2-days ahead horizons onwards, the

use of future data that do not belong to the information set at time t would have been required.

Regarding the HAR-RV model, the future value of the RV that the model uses is the 1-day ahead

forecast i.e. at t +1, but the future l og (Ct ) or log (RSVt ) (where RSV denotes the generic term

for both the positive and negative semi variance measures) values are unknown to the fore-

caster. Thus, inspired by the published work of Degiannakis and Filis, 2017, we forecast those

components through the simple HAR model in order to use them as the required values for

producing RV and OVX for s-days ahead forecasts.

Thus, the equations that have been estimated in order to forecast log (Ct ) and l og (RSVt )

are the following:

log (Ct ) = â(t )
0 + â(t )

1 log (C (d)
t´1)+ â(t )

2 log (C (w)
t´1)

+ â(t )
3 log (C (m)

t´1)+et ,

(2.20)

log (RSVt ) = â(t )
0 + â(t )

1 log (RSV (d)
t´1)+ â(t )

2 log (RSV (w)
t´1)

+ â(t )
3 log (RSV (m)

t´1)+et ,

(2.21)

which follow the structure of a HAR-RV model as mentioned above.
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2.6 Forecast evaluation

2.6.1 Prediction settings

The initial sample period is T =1065 days and we use the remaining T1 days for out-of-sample

forecasting. When obtaining direct h-step ahead forecasts under the HAR-type modelling, a

sample of extra h ´1 days is required at the beginning of the sample15. Furthermore, a rolling

window approach with fixed length of 1000 days is used. In other words, the data from the 1st

to the 1000th is chosen, the parameters are re-estimated, and we, finally, fulfill the forecasting

procedure. The choice of T =1000 days is justified by the fact that a large sample is required for

estimating the proposed models16.

2.6.2 Evaluation functions

The forecasting accuracy of the models is evaluated using two evaluation functions, namely

the Mean Squared Predicted Error (MSPE) and the Mean Absolute Error (MAE), which are de-

fined as:

MSPE (s) = 1

T

T
ÿ

t=1

(RVt+s|t ´ RVt+s)2, (2.22)

and

M AE (s) = 1

T

T
ÿ

t=1

| RVt+s|t ´ RVt+s |, (2.23)

where RVt+s|t is the s-days-ahead realized volatility forecast, whereas RVt+s is the realized

volatility at time t + s.
15This is a reason why we keep the maximum of the forecasting horizons minus 1 (when 1-day ahead forecasts

are generated we don’t need this adjustment), which is 65 days ahead, before the starting point of the initial sample.
16Most of the aforementioned literature on forecasting crude oil price volatility uses similar sample sizes.
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2.6.3 Model Confidence Set

To assess the significant differences among the predicitions of the different forecasting models,

we utilize the established Model Confidence Set (MCS) procedure developed by Hansen et al.,

2011, which identifies the set of the best models, according to their forecasting accuracy in

terms of a loss function, without an a priori choice of a benchmark model because we would

like to evaluate the forecasting accuracy of these models simultaneously and not against a

benchmark model. In this study, the loss function, which is used is the MSPE.

Starting with the goal of the MCS test, given a set of candidate forecast models, M0, it in-

vestigates at a predefined level of significance a, which set of models survive an elimination

algorithm. The MCS procedure starts with the full set of models M = M0 = {1, . . . ,m0}, and

repeatedly tests the following null hypothesis of equal predictive ability:

H0,M : E(di ,i ˚,t ) = 0, @ i , i ˚ P M , (2.24)

where di ,i ˚,t =Ψi ,t ´Ψi ˚,t is defined as the evaluation differential for i , i ˚ P M0 and Ψi ,t =
(RVt+s|t ´ RVt+s)2, where RVt+s|t is the s-days-ahead oil realized volatility forecast obtained

from model i . This procedure is repeated until the null is not rejected any longer. The MCS is

computed for a = 0.1 using a block bootstrap with 10,000 bootstrap replications17.

2.6.4 Directional accuracy

We also consider an additional evaluation technique, the Direction-of-Change (DoC), in or-

der to examine the proportion of forecasts, which predict the direction of the actual volatility

movement correctly. This kind of forecasting evaluation technique is of major significance for

trading strategies and asset allocation. Let us denote as Pi ,t a dummy variable that takes the
17For technical details of the MCS procedure see Hansen et al., 2011.
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value of 1 for each trading day t that model i forecasts the direction of the actual volatility

movement s trading days ahead correctly, whereas it takes the value 0 otherwise:

P (s)
i ,t =

{ 1, if RVt+s > RVt and RVt+s|t > RVt ,

1, if RVt+s < RVt and RVt+s|t < RVt ,

0, otherwise.

(2.25)

Then, the proportion of forecasted values that have predicted the direction of the actual

volatility movement (DoC (s)) correctly is calculated as:

DoC (s) =
řT1

t=1 P (s)
i ,t

T1
ˆ 100, (2.26)

where T1 is the number of out-of-sample forecasted values.

2.6.5 Trading strategy

Apart from the statistical loss functions and the directional accuracy, we further gauge the fore-

casting performance of the different models using an economic loss function. This kind of

forecasting evaluation technique is based on a quasi trading strategy. It works as follows: if the

forecasted oil price volatility of model i at time t + s is higher than that of the actual volatility

at time t , the trader assumes a long position in realized volatility. If the forecasted volatility of

model i at time t +s is lower than that of the actual volatility at time t , then the trader assumes

a short position. Thus, the model’s i cumulative returns over the out-of-sample forecasting

period is calculated as:

r (i ) =
T1
ÿ

t=1

(
(RVt+s ´ RVt )d (i )

t

RVt

)
, (2.27)
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where d (i )
t = 1 if RVt+s|t > RVt and d (i )

t =´1 if RVt+s|t ď RVt .

We reiterate that the same equations (2.22)-(2.27) are used for the evaluation of OVX fore-

casts.

2.7 Out-of-sample results

2.7.1 Evaluation functions results

We start the analysis of the results based on the MSPE statistical loss function, whereas the

results based on MAE are qualitatively similar and can be found in the Appendix.

The results for the WTI oil price realized volatility are shown in Table 2.3, whereas the OVX

results are presented in Table 2.4, respectively. In these tables, the values of the MSPE are

reported for the Random Walk (RW) model, and in the next lines the results for the remaining

models are presented for six different horizons, namely 1, 5, 10, 15, 22, 44 and 66 days ahead
18. A value below 1 denotes that the corresponding model outperforms the RW.

18In these lines, we report the loss functions’ ratios, relative to the RW model.
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Realized volatility - MSPE ratios of HAR-type models to the RW model

Days ahead 1 5 10 15 22 44 66

RW 84.57 140.09 176.85 198.97 235.00 296.78 362.17

OLS - DIRECT

HAR-RV 0.81 0.80 0.79 0.81 0.80 0.82 0.80

HAR-C 0.83 0.81 0.81 0.83 0.82 0.83 0.80

HAR-RSV 0.81 0.78 0.78 0.81 0.78 0.81 0.80

OLS - ITERATED

HAR-RV 0.81 0.79 0.79 0.82 0.81 0.82 0.80

HAR-C 0.83 0.80 0.80 0.83 0.83 0.83 0.81

HAR-RSV 0.81 0.77 0.78 0.81 0.80 0.81 0.81

TVP - DIRECT

HAR-RV 0.81 0.77 0.76 0.78 0.77 0.79 0.79

HAR-C 0.83 0.78 0.77 0.79 0.79 0.80 0.79

HAR-RSV 0.81 0.74 0.73 0.75 0.74 0.76 0.78

TVP - ITERATED

HAR-RV 0.81 0.78 0.77 0.79 0.77 0.77 0.75

HAR-C 0.83 0.79 0.79 0.81 0.79 0.78 0.75

HAR-RSV 0.81 0.76 0.76 0.78 0.76 0.77 0.76

Table 2.3 The results of the MSPE loss function for different forecasting horizons re-
garding RV forecasting errors. Values represent ratios of HAR-type models to the RW
model. A ratio below 1 suggests that MSPE of the corresponding HAR-type model
outperforms that of the RW model. The actual MSPE values are presented only for
the RW model.
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Oil price implied volatility index - MSPE ratios of HAR-type models to the RW model

Days ahead 1 5 10 15 22 44 66

RW 3.52 16.59 29.69 45.04 64.88 121.36 192.21

OLS - DIRECT

HAR-OVX 1.01 1.02 1.05 1.04 1.04 1.00 0.92

HAR-OVX-C 6.91 2.21 1.79 1.54 1.37 1.10 0.86

HAR-OVX-RSV 6.25 2.08 1.71 1.50 1.33 1.05 0.87

OLS - ITERATED

HAR-OVX 1.01 1.03 1.06 1.05 1.03 1.02 0.96

HAR-OVX-C 6.91 2.19 1.72 1.47 1.31 1.05 0.87

HAR-OVX-RSV 6.25 2.03 1.59 1.37 1.22 1.00 0.87

TVP - DIRECT

HAR-OVX 1.01 0.99 0.99 0.99 1.00 0.99 0.99

HAR-OVX-C 7.19 2.31 1.97 1.63 1.43 1.26 1.03

HAR-OVX-RSV 6.20 2.27 1.88 1.66 1.42 1.22 1.06

TVP - ITERATED

HAR-OVX 1.01 1.02 1.04 1.01 0.97 0.93 0.85

HAR-OVX-C 7.19 2.12 1.63 1.37 1.20 0.94 0.77

HAR-OVX-RSV 6.20 2.00 1.55 1.32 1.15 0.92 0.79

Table 2.4 The results of the MSPE loss function for different forecasting horizons re-
garding OVX forecasting errors. Values represent ratios of HAR-type models to the
RW model. A ratio below 1 suggests that MSPE of the corresponding HAR-type model
outperforms that of the RW model. The actual MSPE values are presented only for
the RW model.
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Starting with the RV results, it is observed that each HAR-type model is able to significantly

outperform the RW forecasts for each forecasting horizon. Moreover, the TVP model presents

better results compared to the forecasts that have been produced by using OLS. The HAR-

RSV (TVP/DIRECT) model seems to generate superior forecasts for all horizons, which means

that the inclusion of the realized semi variance components under a TVP estimation frame-

work into a HAR model improves the forecasting performance. This latter model is capable

of reducing the forecasting error by more than 20% (compared to the RW) in short and mid-

term horizons, and more than 25% in long-term horizons. When the HAR-RSV (TVP/DIRECT)

model is compared with the simple HAR-RV (OLS/DIRECT) model, which is widely used in

recent studies, it reduces the forecasting errors by almost 8% for all horizons.

Regarding the statistical evaluation of the OVX forecasts, the results of the models com-

pared to RW do not show better forecasting performance, especially for some horizons. More

specifically, the RW outperforms all the remaining models when forecasting OVX 1-day ahead.

In case of of 5 and 10 days ahead, only the HAR-RV (TVP/DIRECT) model presents a ratio under

1, which means that it produces more accurate forecasts than the RW. Moreover, for long-term

horizons, HAR-type (TVP/ITERATED) models outperform all the remaining models including

the RW. It is interesting to note that the best models for the longer horizons, namely 44 and

66 days ahead, include the continuous and realized semi variance components. Hence, the

inclusion of the realized semi variance measures helps to reduce forecasting errors in longer

forecasting horizons.

2.7.2 Model Confidence Set procedure results

Even though the aforementioned results suggest the combination of TVP specification with the

inclusion of the leverage effect by decomposing realized variance into positive and negative

returns in the HAR model, it is vital to find which model specifications can be included among
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the best models. The results for the MCS test are presented in Tables 2.5 and 2.6 for the RV and

OVX, respectively.
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Realized volatility - MCS test

Days ahead 1 5 10 15 22 44 66

RW 0.002 0.001 0.000 0.000 0.000 0.000 0.000

OLS - DIRECT

HAR-RV 0.904 0.028 0.018 0.001 0.013 0.000 0.000

HAR-C 0.568 0.026 0.000 0.000 0.001 0.000 0.000

HAR-RSV 0.987 0.046 0.025 0.010 0.037 0.001 0.000

OLS - ITERATED

HAR-RV 0.904 0.046 0.018 0.000 0.007 0.000 0.000

HAR-C 0.568 0.028 0.000 0.000 0.000 0.000 0.000

HAR-RSV 1.000 0.046 0.025 0.010 0.013 0.001 0.000

TVP - DIRECT

HAR-RV 0.987 0.046 0.025 0.020 0.037 0.006 0.002

HAR-C 0.554 0.046 0.025 0.010 0.016 0.001 0.002

HAR-RSV 0.904 1.000 1.000 1.000 1.000 1.000 0.002

TVP - ITERATED

HAR-RV 0.987 0.046 0.025 0.020 0.239 0.898 0.671

HAR-C 0.554 0.046 0.025 0.010 0.037 0.013 1.000

HAR-RSV 0.904 0.172 0.184 0.020 0.293 0.898 0.002

Table 2.5 The results of the MCS test for different forecasting horizons related to RV
forecasts. Figures in bold denote the model that belongs to the confidence set of the
best performing models.
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Oil price implied volatility index - MCS test

Days ahead 1 5 10 15 22 44 66

RW 1.000 0.298 0.366 0.269 0.693 0.374 0.000

OLS - DIRECT

HAR-OVX 0.574 0.217 0.008 0.053 0.009 0.002 0.000

HAR-OVX-C 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HAR-OVX-RSV 0.000 0.000 0.000 0.000 0.002 0.002 0.000

OLS - ITERATED

HAR-OVX 0.574 0.032 0.008 0.053 0.044 0.001 0.000

HAR-OVX-C 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HAR-OVX-RSV 0.000 0.000 0.000 0.001 0.009 0.065 0.000

TVP - DIRECT

HAR-OVX 0.574 1.000 1.000 1.000 0.693 0.375 0.000

HAR-OVX-C 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HAR-OVX-RSV 0.000 0.000 0.000 0.000 0.004 0.000 0.000

TVP - ITERATED

HAR-OVX 0.574 0.217 0.158 0.269 1.000 0.803 0.000

HAR-OVX-C 0.000 0.000 0.000 0.000 0.004 0.375 1.000

HAR-OVX-RSV 0.000 0.000 0.000 0.001 0.009 1.000 0.000

Table 2.6 The results of the MCS test for different forecasting horizons related to OVX
forecasts. Figures in bold denote the model that belongs to the confidence set of the
best performing models.
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From Table 2.5, we make the following observations related to RV forecasts. First of all, the

RW, HAR-type (OLS/DIRECT) and HAR-type (OLS/ITERATED) models are never among the

best performing models at all forecasting horizons. However, the HAR-RV (TVP/ITERATED)

belongs to the confidence set of the best performing models at the longer forecasting hori-

zons. The best model is the HAR-RSV (TVP/DIRECT) for almost all forecasting horizons, which

means that the inclusion of the semi variance measures in the HAR model is considered of ma-

jor importance for forecasting oil RV.

In the case of OVX (see Table 2.6), it is remarkable that RW is among the best models. In

more detail, for short and mid term horizons, the HAR-RV (TVP/DIRECT) outperforms the

remaining models except for the case of 1-day ahead for which the RW presents better results.

This has to be taken into account since there are studies that use the HAR-OVX model in order

to obtain 1-day ahead OVX forecasts. For longer forecasting horizons, the incorporation of

the C (d)
t , as well as, RSV (d+)

t and RSV (d´)
t components, help the TVP-HAR models to produce

significantly better results than the remaining models. It is also noticed that for both RV and

OVX, when creating forecasts 44 and 66-days ahead, the iterated approach outperforms the

direct, which asserts that forecasters should predict separately the different components in

order to provide better results.

2.7.3 Directional accuracy results

We further this analysis turning attention to the directional accuracy of these forecasting mod-

els. The DoC results are presented in Tables 2.7 and 2.8, which report the proportion of fore-

casted values that have correctly predicted the direction of realized volatility and oil price im-

plied volatility index movement, respectively. In the case of RV, it is shown that the HAR-type

models that have been estimated by the TVP specification exhibit higher directional accu-

racy of the oil volatility movement, compared to the HAR-RV (OLS/DIRECT) model, which
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is the most widely used HAR model specification in the literature. From Table 2.7, we draw

the conclusion that the HAR-RSV (TVP/DIRECT) model is capable of predicting the direction

of change at a much higher rate compared to the other models in short and mid-term hori-

zons. The same model estimated with the TVP method presents better directional accuracy in

long-term horizons. In particular, the HAR-RSV (TVP/DIRECT) model is able to increase the

directional accuracy by approximately 5% in short and mid-term horizons and by more than

3% for long term horizons compared to the HAR-RV (OLS/DIRECT). Interestingly enough, the

HAR-C (TVP/ITERATED) and the HAR-RSV (TVP/ITERATED) models present directional ac-

curacy more than 67% at 66-days ahead.
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Realized volatility - directional accuracy

Days ahead 1 5 10 15 22 44 66

OLS - DIRECT

HAR-RV 68.01 67.16 65.32 64.35 66.91 61.66 61.78

HAR-C 65.93 68.01 66.06 65.20 67.89 61.17 62.52

HAR-RSV 64.71 68.74 63.86 64.22 67.28 61.78 60.32

OLS - ITERATED

HAR-RV 68.01 67.40 64.35 64.71 66.54 61.90 64.84

HAR-C 65.93 67.89 64.84 64.84 66.42 62.52 65.45

HAR-RSV 64.71 68.62 65.20 65.08 68.01 62.88 64.59

TVP - DIRECT

HAR-RV 67.89 68.25 66.42 66.30 68.86 63.49 62.88

HAR-C 66.54 67.89 66.42 66.42 68.13 61.17 63.25

HAR-RSV 66.30 70.57 67.52 67.40 69.35 64.35 63.25

TVP - ITERATED

HAR-RV 67.89 67.03 66.54 67.03 68.25 64.71 68.01

HAR-C 66.54 68.25 65.69 67.28 67.77 65.45 67.52

HAR-RSV 66.30 69.35 65.57 66.91 68.99 64.71 67.16

Table 2.7 The numbers on the table show the proportion of forecasts that have pre-
dicted the direction of realized volatility correctly. Their significance is gauged by
employing the test of Pesaran and Timmermann (2009), under the null hypothesis of
no directional accuracy. We find that for all models and all forecasting horizons the
null hypothesis is rejected at 1% level of significance.
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Oil price implied volatility index - directional accuracy

Days ahead 1 5 10 15 22 44 66

OLS - DIRECT

HAR-OVX 51.77 51.89 50.55 50.92 53.72 54.21 60.81

HAR-OVX-C 52.63 53.72 49.94 50.55 46.76 51.40 65.69

HAR-OVX-RSV 52.14 52.75 50.06 52.50 50.06 49.82 63.49

OLS - ITERATED

HAR-OVX 51.77 52.50 52.26 54.58 53.72 51.04 61.90

HAR-OVX-C 52.63 52.50 50.55 50.06 49.21 52.99 63.61

HAR-OVX-RSV 52.14 51.04 50.18 52.50 50.43 53.48 63.37

TVP - DIRECT

HAR-OVX 51.89 53.48 52.01 53.85 50.06 49.82 55.56

HAR-OVX-C 52.26 51.89 49.33 51.77 48.72 47.74 55.56

HAR-OVX-RSV 52.50 52.38 51.65 54.21 50.55 50.06 54.82

TVP - ITERATED

HAR-OVX 51.89 53.85 53.72 57.02 58.24 54.46 61.66

HAR-OVX-C 52.26 52.01 47.86 50.67 51.16 57.75 67.16

HAR-OVX-RSV 52.50 50.18 49.69 49.94 50.31 57.51 66.67

Table 2.8 The numbers on the table show the proportion of forecasts that have pre-
dicted the direction of implied volatility correctly. Their significance is gauged by
employing the test of Pesaran and Timmermann (2009), under the null hypothesis of
no directional accuracy. We find that for all models and all forecasting horizons the
null hypothesis is rejected at 1% level of significance.
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Notably, as it is shown in Table 2.8, when forecasting OVX at short and mid-term hori-

zons, the HAR-OVX (TVP/DIRECT) model presents directional accuracy of more than 53%

compared to the values of HAR-OVX (OLS/DIRECT), which are close to 51%. However, the

contribution of the realized semi variance components under the TVP methodology at longer

horizons is material. In particular, for 66-days ahead, the increase of the directional accuracy

that HAR-C (TVP/ITERATED) and HAR-RSV (TVP/ITERATED) provide compared to HAR-RV

(TVP/ITERATED) is approximately 10%.

2.7.4 Trading strategy results

As an additional evaluation method, we assess the forecasting performance of the competing

models based on their economic use, as gauged by a simple trading strategy. It should be noted

that for brevity we do not present the results for all forecasting horizons but only the results for

22-, 44- and 66-days ahead. The results are qualitatively similar for the shorter run horizons.

Focusing first on the RV forecasts, Figures 2.3, 2.4 and 2.5 show the cumulative trading

returns over the out-of-sample period. For 22 and 44 days ahead, it is obvious that the HAR-

RSV (TVP/DIRECT) model obtains the highest trading gains and the RW is the only one that

exhibits negative returns. In the case of 66 days ahead, what matters more is the use of the

iterated approach under the TVP method in the forecasting strategy.
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It is considered of major importance to note that for 66 days ahead, among the best mod-

els are those that include the continuous components by using the iterated approach. Thus,

the inclusion of the aforementioned components provide superior results for the case of OVX,

which is a tradeable asset and the investors could benefit from such forecasts.

Finally, from Table 2.9, which summarises the annualized cumulative returns, it is ob-

served that the returns from the RW are negative for both RV and OVX. However, by includ-

ing the realized semi variance components in the simple HAR model, the cumulative trading

returns increase substantially in the case of RV. More specifically, using the forecasts from the

HAR-RSV (TVP/DIRECT) the annualized cumulative returns reach the level of almost 190%,

85% and 53% at forecasting horizons 22, 44 and 66 days ahead, respectively. For the case of

OVX the annualized cumulative returns are approximately 39%, 36% and 50% at forecasting

horizons 22, 44 and 66 days ahead, respectively. We can also conclude that the TVP models

significantly outperform the models estimated by OLS, in terms of trading gains. Finally, re-

garding the iterated and direct approach, it is observed that for the forecasting horizons of 22

and 44 days ahead the gains are higher when implementing the direct methodology. Never-

theless, the iterated forecasts provide higher gains for both RV and OVX at 66 days ahead.
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Annualized cumulative trading returns

Days ahead
RV OVX

22 44 66 22 44 66

RW -100.40 -74.70 -71.62 -35.46 -37.12 -42.39

OLS - DIRECT

HAR-RV/OVX 150.02 51.91 35.27 -16.56 -6.42 12.36

HAR-RV/OVX-C 155.96 42.50 38.18 1.98 19.45 56.25

HAR-RV/OVX-RSV 158.78 62.54 30.86 22.18 27.05 54.17

OLS - ITERATED

HAR-RV/OVX 147.61 63.73 57.99 1.82 5.24 28.67

HAR-RV/OVX-C 147.05 57.59 59.11 4.40 24.84 49.27

HAR-RV/OVX-RSV 168.22 69.55 59.81 12.27 27.54 47.64

TVP - DIRECT

HAR-RV/OVX 177.54 70.92 43.01 -21.03 -16.55 -15.64

HAR-RV/OVX-C 161.82 50.50 44.67 18.72 20.97 46.73

HAR-RV/OVX-RSV 187.84 84.96 52.58 38.96 35.92 49.65

TVP - ITERATED

HAR-RV/OVX 150.59 70.63 64.42 23.80 17.39 35.75

HAR-RV/OVX-C 151.67 65.97 60.99 15.50 38.77 53.71

HAR-RV/OVX-RSV 170.66 71.54 59.33 13.29 38.36 52.21

Table 2.9 The annualized cumulative trading returns when implementing a trading
strategy on RV and OVX at forecasting horizons 22, 44 and 66 days ahead. The num-
bers refer to percentages (%).
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2.8 Conclusion

Since the literature on forecasting oil price volatility has shown great interest, this chapter

brings together all the different elements in this line of research and provides an answer as

to what matters more for multi-step forecasts. Previous studies provide evidence that in the

case of WTI crude oil the HAR-RV model outperforms all other competing forecasting mod-

els19. This study aims to improve the forecasting performance of the HAR-RV model in order to

capture the changes of the coefficients by considering time-variation in HAR-type models’ pa-

rameters and by implementing not only the direct approach but also the iterated methodology

for obtaining multi-period forecasts for RV and OVX.

This study constructs HAR-type models by incorporating information only from crude oil

volatility without the inclusion of exogenous variables. The HAR-type models that are esti-

mated by the TVP framework with the standardized self-perturbed Kalman filter outperform

the state of the art models under the OLS estimation for all forecasting horizons for both RV and

OVX. Evaluating the aforementioned models, it is obvious for the case of RV that the impact of

realized semi variance components is highly significant and TVP models, which include these

components outperform the remaining models at all forecasting horizons. Furthermore, we

should reiterate that the decomposition of quadratic variation to continuous and jumps com-

ponents does not provide incremental predictive gains. These results are robust under the

trading strategy, as well.

Regarding the generated OVX forecasts, HAR-OVX with OLS estimation does not present

better results than RW, which is really notable since a lot of studies use HAR models estimated

by OLS in order to produce forecasts for OVX. However, by estimating the HAR model under

the TVP methodology, the forecasting performance is improved, especially for short- and mid-
19For further details see Sévi, 2014, Haugom et al., 2014 and Prokopczuk et al., 2016.
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term horizons. One of the most interesting findings is that iterated forecasts including contin-

uous components from the decomposition of quadratic variation provide much better perfor-

mance in longer horizons, relative to other models. This is considered significant information

especially for traders and investors. Finally, we suggest that forecasters should not use the

same models in order to forecast oil RV and OVX, since the factors influencing the accuracy of

their forecasts are different.

The results indicate some interesting directions for future research. First, something that

could be really important for both investors and academics is extending this methodological

framework with the inclusion of exogenous information. Finally, investigating whether the

results of this study would remain qualitatively similar when focusing on forecasting the real-

ized volatility of other crude oil futures (e.g. Brent) would be an important avenue of future

research, since the interconnectedness of different crude oil markets price movements (e.g.

between WTI and Brent) has recently attracted the attention of researchers and policy makers

(Klein, 2018).
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Chapter Three

The impact of the uncertainty environment on

oil price volatility: An out-of-sample

investigation

3.1 Introduction

Crude oil plays a crucial role in the international economy since it is regarded as a key com-

modity for all the international economies. According to Vo, 2011, a rise in oil price impacts

production costs, which affect inflation. Furthermore, due to the financialization of oil mar-

kets, oil price shocks can affect financial markets immediately, which is one of the reasons

why researchers focus on oil price volatility. According to Silvennoinen and Thorp, 2013, the

importance of forecasting oil price volatility can also be explained by the fact that financial

institutions regard the oil market as a profitable investment. Moreover, forecasting oil price

volatility has received significant attention from researchers and policy makers due to the fact

that it significantly affects the global economy and financial stability (Baumeister & Kilian,

2016; Charles & Darne, 2017; Ferderer, 1996; Wang et al., 2016).

Most of the existing papers on forecasting oil price volatility use high frequency data in

order to estimate the daily realized volatility of crude oil. Moreover, as far as we are con-

cerned, many papers use the oil volatility index (OVX) from the Chicago Board Options Ex-
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change (CBOE) in order to improve the realized oil price volatility forecasts (Dutta, 2017; Hau-

gom et al., 2014). It is widely known that implied volatility indices have been used in order to

explain and predict the future uncertainty. In the case of the oil market, OVX is the market’s

expectation of future oil volatility. In the present study, the major implied volatility indices re-

flecting U.S.’s stock market including OVX are categorized to one class as a significant source

of information explaining the future oil price uncertainty.

In addition, there are also other variables affecting the future uncertainty, which have not

been extensively investigated. According to Nazlioglu et al., 2015, oil market movements are

affected by financial stress through their impact on both economic activity and investor behav-

ior. On the one hand, increased financial stress causes economic activity to slow down, which

leads to lower energy demand and declining oil prices. On the other hand, the oil market is

considered as an alternative profitable investment by investors. Therefore, when investors are

adjusting their portfolios with respect to oil price changes, this will have repercussions on fi-

nancial asset prices. Simultaneously, increased financial stress seems to cause investors to ad-

just their portfolios and, therefore, is likely to have an impact on the oil market. In this chapter,

financial stress indices across regions are incorporated in the current methodological frame-

work as a class of factors that are likely to have influence on the future oil price uncertainty.

Another class of factors reflecting uncertainty includes economic policy uncertainty and

business conditions indices, which can be a representation of the economic and business con-

ditions on a daily basis. Moreover, one key factor for capturing the geopolitical uncertainty

through a text-search process is the geopolitical risk index (GPR) calculated by Caldara and Ia-

coviello, 20181, which is also included in this class of uncertainty factors. Finally, in this study,

the dynamic model averaging (DMA) methodology is used for forecasting oil price volatility

and for examining the different uncertainty factors in order to assess their predictive ability.
1For further details see https://matteoiacoviello.com/gpr.htm.
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DMA is a combination method and it can help us recognize the impact of each class on oil

price volatility not only in the short-run but also in the mid- and long-run horizons.

This chapter contributes to the literature in the following ways. First of all, its main con-

tribution is the investigation of whether the inclusion of exogenous variables that reflect the

uncertainty environment provides predictive power regarding future oil price volatility in an

out-of-sample analysis. Second, this study aims to provide an answer to the question of which

class of the above mentioned factors, and specifically which predictor, is most information-

rich for the future oil price volatility. Finally, we examine whether the individual models or the

combination methods provide higher predictive ability for the oil price volatility in terms of

both statistical and economic evaluation techniques.

The findings of this chapter indicate that the predictive accuracy of oil price realized volatil-

ity is improved by incorporating different uncertainty factors depending on the forecasting

horizon. More specifically, when referring to short-run horizons, the contribution of the in-

clusion of all indicators with greater emphasis on implied volatility indices in the DMA ap-

proach is highly significant under both the statistical and economic evaluation frameworks.

At mid- and long-run forecasting horizons, the impact of economic policy uncertainty and

geopolitical risk indices on future oil price volatility is considered high enough to outperform

the competing models. Additional useful information is that VXN improves the forecasting

ability of the naive models especially at mid- and long-run horizons, which can be also viewed

when trading United States Oil Fund, LP (USO) under the trading strategy is assumed. Finally,

It is shown that the DMA combination method generates higher trading returns compared to

the remaining models at 22-days ahead, which means that DMA including all indicators is also

information-rich at long-run horizons that cannot be confirmed from the statistical evaluation

techniques.

The rest of the chapter is structured as follows. Section 3.2 provides the literature review.
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Section 3.3 reports the estimation of the realized oil price volatility. Section 3.4 presents the

data that has been used in this chapter. Section 3.5 introduces the methodology, which can be

separated to the individual and combination modelling frameworks. Section 3.6 describes the

evaluation framework, while Section 3.7 analyses the findings of the chapter. Finally, Section

3.8 presents the conclusions of the chapter.

3.2 Review of the literature

In recent decades, many studies have focused on the oil price volatility, which as mentioned

above is considered of major importance for the global economy. The earliest studies concen-

trate on forecasting oil price volatility by using squared daily returns of oil futures prices as

proxy of volatility (Sadorsky, 2006; Sadorsky & Mckenzie, 2008). Subsequently, a lot of papers

turned their attention to oil price conditional volatility forecasting by implementing GARCH-

family models. For example, Kang et al., 2009 indicate the usefulness of the CGARCH and FI-

GARCH models for modelling and forecasting persistence in the volatility of crude oil prices. In

a similar fashion, Nomikos and Pouliasis, 2011 find that Mix-GARCH and MRS-GARCH models

improve the forecasting performance of oil price conditional volatility compared to the simple

GARCH model.

Nevertheless, Andersen and Bollerslev, 1998 estimate daily volatility by considering intra-

day data, which has been suggested as more information-rich. This alternative volatility mea-

sure is calculated by summing the squared intra-day returns. More specifically, Andersen et

al., 2001, Andersen, Bollerslev, Diebold, and Labys, 2003 and Mcaleer and Medeiros, 2008 con-

sider the realized volatility measure as a proxy of daily volatility. Many studies show that using

intra-day data for volatility forecasting, the forecasting performance of the models is improved

(Engle & Sun, 2007; Hansen & Lunde, 2005). In this context, Corsi, 2009 introduces the Het-
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erogeneous Autoregressive (HAR) model, which produces realized volatility forecasts by cap-

turing "stylized facts" in financial market volatility, such as long memory.

Regarding oil price realized volatility, many studies investigate which variables are able to

increase the forecasting performance of the HAR model. As noted in Chapter 2, Sévi, 2014

finds that considering independently the squared jump component, the continuous compo-

nent, signed jumps and realized semivariances of both signs do not provide any further in-

formation compared to the simple HAR model when forecasting oil price volatility under a

out-of-sample framework. Prokopczuk et al., 2016 also suggest that modelling jumps does not

significantly improve the accuracy of volatility forecasts in energy markets. However, F. Ma et

al., 2018 conclude that adding the jump component and its intensity can substantially increase

the forecasting accuracy.

Recently, studies such as Haugom et al., 2014 incorporate OVX in order to investigate if

the content of the implied volatility indices contains predictive power for the realized volatil-

ity of crude oil. Their results indicate that including implied volatility significantly improves

daily and weekly volatility forecasts. An additional study that presents similar results is that

of Dutta, 2017, which reveals that the information content of OVX helps to provide more ac-

curate volatility forecasts in comparison with the simple HAR model. Furthermore, Lv, 2018

proposes that OVX and its decomposition based on a certain threshold provide more accurate

oil price volatility forecasts. Interestingly, he finds that large OVX values have slightly larger

impacts than smaller values of OVX on future volatility, which can be used in a future research

study.

Some studies include other factors, besides OVX, in order to capture the future uncertainty.

For example, R. Ma et al., 2019 investigate through a GARCH-MIDAS model the impact of eco-

nomic policy uncertainty (EPU) on the crude oil price volatility and specifically which EPU

index provides the most forecasting power in the crude oil market. It is found that EPU has
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a positive and significant short-term effect on the crude oil price volatility. Moreover, a study

by Mei et al., 2019 provides information that not only EPU, but also monetary policy uncer-

tainty (MPU) significantly helps in forecasting oil volatility by considering both of them to-

gether rather than separating those factors. The methodology that is implemented in the latter

study relies on the GARCH-MIDAS modelling framework. Finally, the impact of the geopoliti-

cal risk factor on the oil price volatility is analyzed in recent studies. J. Liu et al., 2019 examine

the role of geopolitical risk in the future oil price volatility and find that it contains useful in-

formation and can provide higher economic gains compared to the forecasts obtained from

the simple GARCH-MIDAS model. A more recent study of Mei et al., 2020 provides qualita-

tively similar results by implementing a MIDAS model for forecasting realized oil price volatil-

ity. This specific MIDAS-RV-GPR model is extended by replacing the RV with the continuous

and jump components, which can outperform the benchmark and other competing models.

It is also noteworthy that the frequency of the above mentioned uncertainty factors that are

used, namely the EPU, MPU and GPR is monthly. However, EPU and GPR indicators are also

available in daily frequency, which is what we aim to use in this chapter in order to extract

further information.

Another class of uncertainty indices that are recently used in an out-sample analysis is the

financial stress environment, which is included by Gkillas et al., 2020. In that study, the impact

of global and regional measures of financial stress on forecasting oil price realized volatility is

investigated. They conclude that extending the simple HAR model by including indices of fi-

nancial stress, which differentiates among regional sources, helps to improve forecasting per-

formance. A first study that examines the relationship of financial stress index and oil prices is

done by Nazlioglu et al., 2015, who reveal a significant spillover between the energy (via WTI

crude oil) and financial (via financial stress index) markets,both in terms of volatility and mean

estimates.
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3.3 Estimating realized volatility

Realized variance has been widely estimated as a proxy for the volatility by using intra-day

data. In our case, we follow most of the studies and our analysis is also based on the realized

variance estimator. We are then based on the calculation of the realized volatility as noted in

Chapter 2 and we use the annualized realized volatility, which is defined as ARVt .

In this study, the quadratic variation is not decomposed into continuous and jump com-

ponents since the main objective is not the investigation of the role of jumps in forecasting oil

price volatility.

3.4 Data

The dataset of this chapter includes daily and tick-by-tick transaction data, which is used for

the estimation of the realized volatility. More specifically, the WTI realized volatility estimator

has been calculated by using tick-by-tick transaction data of the front-month futures contracts

for the WTI crude oil. It is also important to mention that the 10 minutes sampling frequency

has been found to minimize the autocovariance bias induced by microstructure noise issue

and this is why this data frequency is used. The source of the retrieved tick-by-tick data is

TickData. Figure 3.1 portrays the annualized realized volatility and the OVX series. It is appar-

ent that high values of volatility are observed in the late 2014 - early 2015 period due to the

sudden decline of the oil prices.
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Besides the intra-day data, some implied volatility indices, namely the OVX, VIX, VXN and

VXD are used in this study as predictors of the oil price volatility. This dataset is readily avail-

able at a daily frequency and is obtained from CBOE for the corresponding implied volatility

indices.

Another class of uncertainty that is used in this chapter includes the EPU of U.S.2 devel-

oped by Baker et al., 2016. We rely on U.S.’s EPU motivated by the study of Wei et al., 2017,

who conclude that U.S.’s EPU index has superior predictive power for WTI spot oil volatility.

This index is based on newspaper archives from Access World New’s NewsBank service and

measures the number of articles that contain at least one term from each of 3 sets of terms

namely, economic or economy, uncertain or uncertainty, and legislation or deficit or regu-

lation or Congress or Federal Reserve or White House. Moreover, GPR is added to the list of

that reflect uncertainty. The GPR index reflects automated text-search results of the electronic

archives of 11 national and international newspapers and it is calculated by counting, in each

of the 11 newspapers, the number of articles that contain the search terms3, which are related

to geopolitical risks on a daily basis. Finally, the ADS business condition index is considered

an uncertainty factor that is used in this chapter due to the fact that it is designed to track

real business conditions at high observation frequency and its underlying economic indica-

tors (such as weekly initial jobless claims, monthly industrial production, quarterly real GDP),

blend high frequency and low frequency data4.

Regarding the financial stress indices, the data is retrieved from the Office of Financial Re-

search (OFR)5, which provides a market-based snapshot of stress in financial markets on a
2For further details please visit the https://www.policyuncertainty.com/us_monthly.html.
3See https://www.matteoiacoviello.com/gpr.htm for further details.
4The ADS index on the web page https://philadelphiafed.org/research-and-data/real-time-center/business-

conditions-index is updated in real time as new or revised data on the index’s underlying components are released.
5The data is available for download from https://www.financialresearch.gov/financial-stress-index.
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daily basis. This index is constructed using 33 financial market variables, such as yield spreads,

valuation measures and interest rates. Furthermore, when the FSI index is positive, it means

that the stress levels are above average. The index is negative when stress levels are below av-

erage. Figure 3.2 displays all the explanatory variables that are mentioned above categorized

by class.

The sample for both WTI realized volatility and all the uncertainty indicators that are used

is common from January 4, 2010 to August 30, 2019 and the number of observations is 2494

(trading days). Table 3.1 presents the descriptive statistics of those variables.
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Figure 3.2 This figure depicts the indicators of the three uncertainty classes, namely
the EPU, GPR, ADS from the first class, the FSI among regions from the second class
and the VIX, VXD and VXN from the class including the major IV indices of the U.S.
stock market.
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Variable USFSI OTHERFSI EMERGFSI VIX VXD VXN

Mean -0.5954 -0.4905 -0.0253 16.9430 16.0692 18.9949

Median -0.6595 -0.9140 -0.0540 15.5750 14.8150 17.5500

Maximum 2.4080 4.1630 0.6300 48.0000 41.4500 46.6300

Minimum -1.8090 -2.1620 -0.3420 9.1400 7.5800 10.3100

Std. Dev. 0.7943 1.2611 0.1645 5.6984 4.8556 5.4035

Skewness 1.0342 1.1817 0.9847 1.7100 1.7550 1.5575

Kurtosis 4.0671 4.0544 3.9872 6.6991 6.8793 5.9822

Jarque-Bera 562.9177 695.9212 504.3506 2637.4060 2844.1630 1932.4800

Observations 2494 2494 2494 2494 2494 2494

Table 3.1 Descriptive statistics of the variables that have been used in the empirical
analysis for forecasting realized oil price volatility.
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3.5 Modelling framework

3.5.1 Naive model specifications

A simple Random Walk (RW) without a drift is considered as our naive model and it is written

as:

log (ARVt ) = l og (ARVt´1)+εt , (3.1)

where ARVt is the annualised realized volatility of the WTI crude oil at day t and εt is a white

noise.

In addition to RW, the AR(1) is estimated, which is another naive model that has been

widely used, since we would like to evaluate their forecasting performance compared to that

of more sophisticated models. The AR(1) model specification is the following:

log (ARVt ) = â(t )
0 + â(t )

1 l og (ARVt´1)+et , (3.2)

where et is the residual term.

3.5.2 Individual models - HAR model specification

In this chapter, the individual models are based on the HAR model specification proposed by

Corsi, 2009. The HAR structure captures stylized facts of financial market volatility such as

long memory and is motivated by the heterogeneous market hypothesis proposed by Muller

et al., 1997. Thus, the main idea of the HAR specification is to use realized volatility aggregated

over different time horizons in order to disentangle the information coming from the different

market participants (e.g. short-term traders and long-term traders). The benchmark HAR-RV

model is written as follows:
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l og (ARVt ) = â(t )
0 + â(t )

1 log (ARV (d)
t´1)+ â(t )

2 log (ARV (w)
t´1)

+ â(t )
3 log (ARV (m)

t´1)+et ,

(3.3)

where et is the residual term and â(t )
0 , â(t )

1 , â(t )
2 , â(t )

3 are the estimated parameters. Moreover, the

components of the HAR structure, namely the realized volatilities aggregated over different

time horizons, are calculated as: l og (ARV (d)
t´1) = log (ARVt´1);

log (ARV (w)
t´1) =

(
5´1 ř5

k=1 log (ARVt´k )
)
;

log (ARV (m)
t´1) =

(
22´1 ř22

k=1 l og (ARVt´k )
)
, which is in line with Corsi and Renò, 2012.

In this study, the HAR-RV model is extended by including OVX as an additional variable

because of its large impact on oil price volatility according to many studies (Haugom et al.,

2014; Lv, 2018). The HAR-OVX model specification is written as:

log (ARVt ) = â(t )
0 + â(t )

1 log (ARV (d)
t´1)+ â(t )

2 log (ARV (w)
t´1)

+ â(t )
3 log (ARV (m)

t´1)+ β̂(t )
1 OV X t´1 +et ,

(3.4)

where log (OV X t´1) is the one lagged OVX in logarithmic transformation. Since it is known

that the HAR-OVX model provides predictive information on realized oil price volatility, we

rely on this model and the additional factors reflecting uncertainty will be added in this specific

model structure such as HAR-OVX-X, where X represents each uncertainty factor of the three

different classes. First of all, denote by X (U NC )
t the uncertainty factor that represents each of

the variables, which are included in the uncertainty class of geopolitical risk, economic policy

uncertainty and ADS business conditions indicators. Each factor of the class of uncertainty,

which maintains the financial stress indices, is written as X (F SI )
t and each factor of the third

class (implied volatility indices), is represented as X (IV )
t . Thus, three different categories of

individual models are applied depending on the uncertainty class, written as follows:
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log (ARVt ) = â(t )
0 + â(t )

1 log (ARV (d)
t´1)+ â(t )

2 log (ARV (w)
t´1)

+ â(t )
3 log (ARV (m)

t´1)+ β̂(t )
1 OV X t´1 + β̂(t )

2 X (U NC )
t´1 +et ,

(3.5)

log (ARVt ) = â(t )
0 + â(t )

1 l og (ARV (d)
t´1)+ â(t )

2 log (ARV (w)
t´1)

+ â(t )
3 l og (ARV (m)

t´1)+ β̂(t )
1 OV X t´1 + β̂(t )

2 X (F SI )
t´1 +et ,

(3.6)

log (ARVt ) = â(t )
0 + â(t )

1 log (ARV (d)
t´1)+ â(t )

2 log (ARV (w)
t´1)

+ â(t )
3 log (ARV (m)

t´1)+ β̂(t )
1 OV X t´1 + β̂(t )

2 X (IV )
t´1 +et .

(3.7)

Therefore, nine individual models are implemented, which are extensions of the HAR-OVX

model. The forecasts obtained from these individual models will be evaluated in order to an-

swer the question whether they provide additional information to the simple HAR-RV and the

HAR-OVX models at different forecasting horizons or not. Before continuing to the next part,

it is considered convenient for the current analysis to represent the aforementioned models

in a more general way. Define xt=
[
1 log (ARV (d)

t´1) l og (ARV (w)
t´1) log (ARV (m)

t´1)
]

as the (1 ˆ 4)

vector of components of the simple HAR-RV. Moreover, yt = log (ARVt ) is defined, which is

the logarithmic transformation of the realized oil price volatility. The vector of the uncertainty

factors including at least OVX is represented as xt,UNC, xt,FSI, or xt,IV depending on to which

uncertainty class our exogenous variable belongs. One example of the latter vector could be

the following: xt,UNC = [
OV X t´1 EPUt´1

]
, which refers to the HAR-OVX-EPU model. We can

now replace Eq.(3.5), which corresponds to the simple HAR-RV, with the following one:

yt = xtαt +εt , (3.8)
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whereαt =
[
a(t )

0 , a(t )
1 , a(t )

2 , a(t )
3

]1 is the corresponding parameter vector. Regarding the different

individual models, which correspond to Eq. (3.7-3.9), we replace them with a more general

equation, as follows:

yt = xtαt +xt ,U NC |F S I |IVβt +εt , (3.9)

where βt is a vector that includes at least OVX as an uncertainty indicator. For example, the

HAR-OVX-EPU model can be defined under the Eq. (3.11) with the βt vector denoted as[
β(t )

OV X , β(t )
EPU

]1.

After the estimation of the individual models, the forecasting framework is implemented,

which is based on Buncic and Gisler, 2016. More specifically, the regression of the HAR-RV

model can be defined as:

yt+h = xtα
(h) +εt+h . (3.10)

The direct forecast is xt α̂
(h)
t , where α̂(h)

t is an estimate of α(h) that only relies on data up to

period t . Moreover, due to the fact that we focus on realized volatility forecasts in this chapter,

we replace yt+h = log (ARVt+h) with ARVt+h = e yt+h 6, where h denotes the days ahead that the

forecasts are generated.

3.5.3 Dynamic model averaging (DMA) approach

Recent literature includes studies that capture structural breaks that are detected. Most of the

models that are widely used so far assume constant coefficients, which is not the case in this
6It is noted here that the error variance term 0.5σ2

ε should be incorporated in the forecasting, since logarithmic

transformation is applied in the models, but it has negligible effect on the results.
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study. In this methodological framework, time-varying parameters are assumed in order to

capture potential structural breaks. Furthermore, in an individual modelling framework, the

set of predictors included in the model remains constant over time. However, in this chapter,

we allow for K models which utilize different sets of predictors to be applicable at different

time periods. Therefore, it is allowed for both parameters of a model and the model itself to

change over time by using the DMA approach proposed by Raftery et al., 2010. The state-space

model7 consists then of the two following equations:

yt = x (k)
t α(k)

t +ε(k)
t for ε(k)

t „ N (0, H (k)
t ), (3.11)

α(k)
t =α(k)

t´1 +u(k)
t for u(k)

t „ N (04ˆ1,Σ(k)
ut

). (3.12)

where k = 1, . . . ,K , α(k)
t are the regression parameters of the HAR-RV model specification and

the errors ε(k)
t and u(k)

t are mutually independent at all of the leads and lags. Moreover, if there

are m predictors in x (k)
t , the total number of possible combinations of these predictors is K =

2m . According to the Eq. (3.13), which is based on the HAR-RV specification, the number of

combinations is K = 24 = 16. This model can be estimated by using the Kalman filter method8.

One key element that has to be mentioned is that the approximation of the forgetting factor

λ, which is used in order to avoid estimating the state covariance matrix Σ(k)
ut

is replaced by

the standardized self-perturbed Kalman filter9 proposed by Grassi et al., 2017. This specific
7This state space form is based on the simple HAR-RV model specification for simplicity reasons. The state

space model is of similar fashion for the other models that include uncertainty indicators as predictors of the real-

ized oil price volatility.
8More details for each step of the estimation of time-varying parameter (TVP) models and the combination of

those models through the DMA approach can be found in the Appendix
9This methodological part is motivated by the first study (Chapter 2), which provides more details on this ap-

proximation.
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approach avoids the calibration of a design parameter as the perturbation term is scaled by

the amount of the uncertainty in the realized oil price volatility data.

In the current study, the main purpose is to explore the forecasting performance of the

different uncertainty factors categorized into three classes, namely the uncertainty driven by

economic policy uncertainty, geopolitical risk and business conditions, the uncertainty com-

ing from the financial stress across regions and the uncertainty captured by the main implied

volatility indices of the U.S. stock market. Thus, the DMA approach is implemented for each

uncertainty class in order to generate forecasts of oil price volatility at multiple periods ahead.

Therefore, Eq. (3.13) will be extended to the following:

yt = x (k)
t α(k)

t +x (k)
t ,U NC |F S I |IVβ

(k)
t +ε(k)

t for ε(k)
t „ N (0, H (k)

t ), (3.13)

where there is one major difference. The vector of the uncertainty factors x (k)
t ,U NC |F S I |IV in-

cludes OVX and the whole indicators’ list included in each category because we want to reveal

the corresponding weight of each predictor to oil price volatility and not to rely on an individ-

ual uncertainty factor. In other words, one purpose of this chapter is the investigation of the

predictive information of each factor for all uncertainty classes. Finally, since we need the in-

corporation of those uncertainty factors not to be restricted, one model is estimated including

all variables of all uncertainty classes through the DMA approach in order to arrive at more

general results for the contribution of the variables under investigation.
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3.6 Forecast evaluation

3.6.1 Prediction settings

The settings regarding the modelling framework are as follows. First of all, the initial sample

period is T =1043 days, since there is a need for h´1 days for implementing the direct forecast-

ing approach and on additional 22 days (the component of the HAR structure with the maxi-

mum length). The 1000 days of the initial sample period T is the fixed length that is used for

the rolling window estimation approach. More specifically, when referring to the rolling win-

dow estimation, we choose the data from the 1st to the 1000th , we then generate the forecasts

by using the estimated parameters, we re-estimate the parameters for the data from the 2nd

to the 1001st and we implement again the forecasting methodology. T =1000 days is justified

by the fact that a large sample is required for estimating the proposed models. The remain-

ing out-of-sample period is used for the evaluation of the oil price volatility forecasts and is

defined as T1.

3.6.2 Statistical loss functions

The first part of the evaluation of the models regarding their forecasting performance will be

done using the widely used statistical loss functions, namely the Mean Squared Predicted Error

(MSPE) and the Mean Absolute Error (MAE), which are defined as:

MSPE (h) = 1

T1

T1
ÿ

t=1

(ARVt+h|t ´ ARVt+h)2, (3.14)

and

M AE (h) = 1

T1

T1
ÿ

t=1

| ARVt+h|t ´ ARVt+h |, (3.15)

where ARVt+h|t is the h-days-ahead realized volatility forecast, ARVt+h is the realized volatility

at time t +h and T1 is the number of the out-of-sample data points.
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3.6.3 Model Confidence Set

Additionally, the established Model Confidence Set (MCS) is used in order to further evaluate

the predictions, since this specific procedure developed by Hansen et al., 2011 offers the ad-

vantage of identifying the set of the best models depending on a loss function, which is MSPE

in our study. However, this procedure is also implemented by using MAE as a loss function,

which provides qualitatively similar results.

The target of the MCS test is to investigate which set of models remains until the end, un-

der an elimination algorithm, at a predefined level of significance a. At the beginning of the

process, the full set of models M = M0 = {1, . . . ,m0} is used and the following null hypothesis of

equal predictive ability is repeatedly tested:

H0,M : E(di ,i ˚,t ) = 0, @ i , i ˚ P M , (3.16)

where di ,i ˚,t =Ψi ,t ´Ψi ˚,t is defined as the evaluation differential for i , i ˚ P M0 and Ψi ,t =
(ARVt+h|t ´ ARVt+h)2, where ARVt+h|t denotes the h-days-ahead oil price volatility forecast

produced by using model i . This process is repeated until the null is not rejected any longer.

The defined level of significance is a = 0.1 and a block bootstrap with 10,000 bootstrap repli-

cations is another predefined setting for fulfilling the procedure10.

3.6.4 Trading strategy

Apart from the statistical evaluation of the obtained forecasts, which is based on the loss func-

tions, we investigate the forecasting performance of the models by using an economic loss

function. This kind of forecasting evaluation technique is based on trading USO. A simple

trading strategy is applied, which works as follows: if the oil price volatility forecast of model
10For further details see Hansen et al., 2011.
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i at time t +h is higher than that of the actual oil price volatility at time t , the trader takes a

short position in USO, which holds predominantly short-term NYMEX futures contracts on

WTI crude oil. If the oil price volatility forecast of model i at time t +h is lower than that of the

actual oil price volatility at time t , then the position that the trader takes is long11. Thus, the

cumulative return of model i , which is the metric for comparing the models, over the out-of-

sample period is measured as12:

r (i ) =
T1
ÿ

t=1

(
(U SOt+h ´U SOt )d (i )

t

U SOt

)
, (3.17)

where d (i )
t = 1 if ARVt+h|t < ARVt and d (i )

t =´1 if ARVt+h|t > ARVt .

3.7 Out-of-sample results

3.7.1 Loss functions results

An this point, oil price volatility forecasts are evaluated by using the statistical loss functions,

namely MSPE and MAE. Regarding both MSPE and MAE results, which can be found in Ta-

bles 3.2 and 3.3, respectively, the values of the two naive models and the simple HAR-RV are

reported in the first rows, whereas the ratios of the corresponding model to the benchmark

HAR-RV model are presented in the next rows of the table. These ratios can help us recognize

which models perform better than others and mainly whether they provide better predictive

accuracy in comparison with the simple HAR-RV model. For instance, a ratio that takes value

below 1 denotes that the corresponding model outperforms the HAR-RV model. The results
11This idea is based on the sense that the trader is afraid of higher volatility and therefore (s)he assumes short

position in USO.
12In this study, zero transaction costs are assumed because we are not focusing on the profits but in comparing

the models which provide oil price volatility forecasts.
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for both loss functions refer to five different forecasting horizons, namely 1, 5, 10, 15 and 22

days ahead.
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MSPE results

Days-ahead 1 5 10 15 22

RW 74.92812 112.9533 141.7351 153.3292 187.9267

AR(1) 71.48478 103.8418 124.1968 134.5277 156.7742

HAR-RV 58.71964 87.50515 106.9928 121.4028 143.0997

HAR-OVX 0.913599 0.959522 0.980665 1.008551 1.007722

HAR-OVX-GPR 0.911765 0.948593 0.974812 0.99711 0.997739

HAR-OVX-EPU 0.907762 0.958769 0.968718 1.002888 1.002489

HAR-OVX-ADS 0.915976 0.965718 0.992219 1.022228 1.020747

HAR-OVX-USFSI 0.917274 0.968463 0.996901 1.03916 1.045858

HAR-OVX-OTHERFSI 0.909828 0.959308 0.9915 1.038028 1.05308

HAR-OVX-EMERGFSI 0.914774 0.968392 0.986006 1.014873 1.021001

HAR-OVX-VIX 0.910874 0.960551 0.980225 1.020985 1.030246

HAR-OVX-VXD 0.907329 0.946211 0.983489 1.018721 1.027408

HAR-OVX-VXN 0.916212 0.957868 0.971005 1.003369 1.00359

DMA-UNC 0.904325 0.978275 1.034682 1.044243 1.035657

DMA-FSI 0.900751 0.996188 1.026445 1.1068 1.122249

DMA-IV 0.897053 0.913063 0.97904 1.04845 1.02535

DMA-ALL 0.867821 0.90292 0.983021 1.100819 1.157492

Table 3.2 The results of the MSPE loss function for different forecasting horizons.
Values represent ratios of the full set of the models to the HAR-RV, which is consid-
ered the benchmark model in this paper. A ratio below 1 suggests that MSPE of the
respective model outperforms that of the HAR-RV model. The actual MSPE values
are presented for RW, AR(1) and HAR-RV models.
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MAE results

Days-ahead 1 5 10 15 22

RW 6.10246 7.434129 8.353564 8.353564 9.630948

AR(1) 5.858863 6.979731 7.682185 7.682185 8.690443

HAR-RV 5.190573 6.357207 6.998187 6.998187 8.209058

HAR-OVX 0.95553 0.96594 0.982697 0.982697 0.984607

HAR-OVX-GPR 0.956284 0.967176 0.985952 0.985952 0.991777

HAR-OVX-EPU 0.953191 0.968952 0.977608 0.977608 0.980887

HAR-OVX-ADS 0.956791 0.970215 0.99062 0.99062 0.995045

HAR-OVX-USFSI 0.959875 0.975151 0.992937 0.992937 1.003103

HAR-OVX-OTHERFSI 0.95568 0.973164 0.998129 0.998129 1.023486

HAR-OVX-EMERGFSI 0.955499 0.968833 0.987188 0.987188 0.996349

HAR-OVX-VIX 0.952626 0.968309 0.994183 0.994183 1.008376

HAR-OVX-VXD 0.951802 0.960009 0.984254 0.984254 1.003127

HAR-OVX-VXN 0.957124 0.972595 0.995466 0.995466 1.001912

DMA-UNC 0.953741 0.982148 1.018576 1.018576 1.018019

DMA-FSI 0.949533 0.988966 1.018683 1.018683 1.040901

DMA-IV 0.949333 0.953704 0.993267 0.993267 1.001921

DMA-ALL 0.942091 0.95835 1.009243 1.009243 1.064913

Table 3.3 The results of the MAE loss function for different forecasting horizons. Val-
ues represent ratios of the full set of the models to the HAR-RV, which is considered
the benchmark model in this paper. A ratio below 1 suggests that MAE of the re-
spective model outperforms that of the HAR-RV model. The actual MAE values are
presented for RW, AR(1) and HAR-RV models.
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From a first look, it is observed that the HAR-RV model always performs better than the two

naive models, which is in line with the literature. It is also observed that the DMA-ALL model,

which includes all uncertainty predictors, outperforms the remaining model in short-run hori-

zons. This is also confirmed by viewing the MAE results, which are qualitatively similar. The

fact that the DMA approach including all indicators reflecting uncertainty improves the fore-

casting ability, confirms our statement that combining different classes of uncertainty factors

improves the predictive accuracy of realized oil price volatility. More specifically, according

to MSPE results, the DMA-ALL model is capable of reducing the forecasting error by 13% in

short-run horizons. It is also important to note that the DMA including IV indices performs

well and seems to provide information on future oil price volatility.

Regarding mid-run horizons, it is observed that IV indices included as predictors in the

DMA method, have a large impact on future oil price volatility. More specifically, regarding

both MSPE and MAE results, it is noted that the forecasting error is reduced by almost 5%

when implementing the DMA approach incorporating IV indices as predictors. In addition

to this, the individual model HAR-OVX-VXN performs better than other models of its class.

However, individual models representing the first uncertainty class, such as HAR-OVX-GPR

and HAR-OVX-EPU, outperform the remaining models, which is a signal that economic policy

uncertainty and geopolitical risk index are information-rich in mid-run horizons for oil price

volatility forecasts. It is remarkable to mention here that these indicators when included in

the DMA approach do not perform as well as they do when they are used in an individual

modelling framework.

Regarding long-run horizons, it is obvious that the DMA approach does not beat even the

simple HAR-RV model, which is the benchmark model in this study, in terms of MSPE and

MAE loss functions. Moreover, the statement of the previous paragraph that individual models

including economic policy uncertainty and geopolitical risk index outperform the rest of the
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models is confirmed, in terms of both MSPE and MAE loss functions. However, the forecasting

error is slightly decreased even when we use the aforementioned models.

Thus, we can conclude that, under the loss functions of the evaluation framework, the

DMA approach improves the predictive accuracy when referring to short-run horizons. The

importance of IV indices is also significant in short- and mid-run horizons and more specifi-

cally the impact of VXN. Finally, at mid- and long-run horizons, indicators of the first uncer-

tainty class, namely the EPU and GPR, outperform the remaining models when they are used

in individual HAR model specifications. It is also crucial for our conclusion to mention that the

aforementioned models include OVX by default, since it is considered of major importance for

future oil price volatility13. Therefore, the above mentioned models that include uncertainty

indicators enhance the forecasting ability of not only the HAR-RV model but also the HAR-OVX

model.

3.7.2 Model Confidence Set procedure results

After having evaluated the models that have been used in the methodological part, it is con-

sidered efficient to find the set of the models that are included in the set of the best models.

The first finding related to short-run horizons is that the two naive models and the HAR-RV do

not belong to the confidence set of the best performing models. The results of the MCS test

are presented in Table 3.4.

13The HAR-OVX model performs better than the HAR-RV model in short- and mid-run horizons.
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MCS test

Days-ahead 1 5 10 15 22

RW 0.0000 0.0000 0.0002 0.0019 0.0002

AR(1) 0.0000 0.0005 0.0050 0.0133 0.0628

HAR-RV 0.0265 0.0976 0.3459 0.9391 0.9674

HAR-OVX 0.1488 0.4944 0.6084 0.5255 0.6833

HAR-OVX-GPR 0.1488 0.5528 0.9131 1.0000 1.0000

HAR-OVX-EPU 0.1488 0.5528 1.0000 0.9391 0.9674

HAR-OVX-ADS 0.1488 0.1346 0.0466 0.1391 0.2793

HAR-OVX-USFSI 0.1223 0.0976 0.0149 0.0133 0.0076

HAR-OVX-OTHERFSI 0.1488 0.4944 0.3459 0.1077 0.0076

HAR-OVX-EMERGFSI 0.1488 0.1346 0.3459 0.5255 0.3427

HAR-OVX-VIX 0.1488 0.5528 0.7997 0.5039 0.2399

HAR-OVX-VXD 0.1488 0.5528 0.6084 0.5039 0.2399

HAR-OVX-VXN 0.1488 0.5528 0.9131 0.9391 0.9674

DMA-UNC 0.1488 0.4351 0.0149 0.5039 0.2793

DMA-FSI 0.1488 0.0976 0.0149 0.0133 0.0076

DMA-IV 0.1488 0.6636 0.9131 0.1391 0.3427

DMA-ALL 1.0000 1.0000 0.9131 0.0133 0.0076

Table 3.4 The results of the MCS test for different forecasting horizons. Figures in
bold denote the model that belongs to the confidence set of the best performing
models.
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The DMA including all uncertainty indicators is considered the best model at least for 1 and

5 days ahead. It is also observed that the combination of the DMA approach with all potential

predictors do not belong in the set of the best models in mid- and long-run horizons, which

confirms the results of the evaluation using the two loss functions. However, the models that

incorporate variables of the first and the second class of uncertainty, except for the HAR-OVX-

ADS model, belong always in the set of the best performing models.

Another finding is the fact that models which include FSI across regions do not belong in

the best models, especially in mid- and long-run horizons. More particularly, the HAR-OVX-

USFSI model that reflects the financial stress in the U.S. does not perform well and this is re-

markable for the main findings of this chapter. Finally, we conclude from the results of the

MCS test that IV indices, separately and combined in a DMA approach, always belong in the

set of the best models and enhance the forecasting performance of the HAR-RV and HAR-OVX

models, especially at short- and mid-run horizons. Regarding the first class of uncertainty and

more specifically EPU and GPR indices, we conclude that their contribution to oil price volatil-

ity forecasting is crucial and enhances the predictive accuracy especially at mid- and long-run

horizons, which is confirmed by the fact that they are the best models under the MCS test.

3.7.3 Trading strategy results

Another evaluation method, which is based on a simple trading strategy, uses 1-, 5-, 10-, 15-

and 22-days ahead realized oil price volatility forecasts in order to take long or short position

on USO. Figures 3.3 to 3.7 depict the cumulative trading returns over the out-of-sample period.
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Focusing on the USO returns by using 1- and 5-days ahead oil price volatility forecasts, the

conclusion that can be drawn is that the DMA approach including all predictors of the three

classes generates the highest trading returns. Moreover, it is observed that the DMA approach,

which includes indicators of the first and the third class obtains positive gains compared to

most of the remaining models.

With regard to 10-days ahead forecasting, using individual models, namely the HAR-OVX-

GPR and HAR-OVX-EPU models, and also the combination of the indicators of the first uncer-

tainty class under the DMA approach provide the best results. This does not mean that they

generate positive cumulative returns over the entire out-of-sample period, but even in those

periods they obtain smaller losses compared to the remaining models.

Moreover, when assuming position in the USO based on 15- and 22-days ahead oil price

volatility forecasts, is is observed that the DMA approach including all potential predictors

and DMA which incorporates the indicators of the first uncertainty class, outperform the re-

maining models since they generate higher cumulative returns compared to the competing

models. The fact that those factors are information-rich in long-run horizons is in line with

the evaluation under the statistical loss functions and results of the MCS test.

Finally, from Tables 3.5 and 3.6, which show the annualized cumulative differences of the

entire list of the implemented models compared to the models HAR-RV and HAR-OVX, it is ob-

served that DMA approaches including all uncertainty factors and especially implied volatil-

ity indices generate higher trading returns referring to short-run horizons. More specifically,

DMA-ALL generates 25% trading returns higher than HAR-RV and 22% higher than HAR-OVX,

which can be considered of major importance for professional forecasters. The DMA-IV model

which includes the main implied volatility indices of the U.S. stock market, generates trading

returns 20% higher than HAR-RV and 17% higher than HAR-OVX. Regarding mid-run horizons,

the impact of the first uncertainty class including the EPU, GPR and ADS indices is already ob-
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vious. More specifically, the inclusion of geopolitical risk in an individual model generates

higher trading returns compared to both HAR-RV and HAR-OVX models. This difference of

cumulative returns is almost 3%, which holds for long-run horizons, as well. One difference

compared to the results of the previous evaluation techniques is the fact that DMA-UNC and

DMA-ALL outperform the remaining models by generating higher trading returns at long-run

horizons, which is not the case when the forecasts obtained by the models are evaluated us-

ing statistical loss functions and the MCS test. In this case, DMA-ALL generates more than 6%

higher trading returns than HAR-RV and HAR-OVX models, when referring to the forecasting

horizon of 22-days ahead. Finally, it is remarkable the fact that the HAR-OVX models gener-

ates higher trading returns than the HAR-RV model only at short-run horizons, which means

that the predictive accuracy that OVX provides to the simple HAR-RV is restricted to short-run

horizons. This statement is also confirmed by the previous evaluation techniques.
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Annualized cumulative differences in trading returns (all vs HAR-RV)

Days ahead 1 5 10 15 22

RW -11.212 -21.7416 -16.0331 -14.53 -8.29693

AR(1) -9.22747 -16.2644 -10.1465 -9.20942 -2.27066

HAR-OVX 3.268394 -4.10577 -3.51336 -2.54182 -0.08099

HAR-OVX-GPR 8.330662 -1.10968 0.032817 1.351331 2.548685

HAR-OVX-EPU 3.097745 -2.37795 0.069991 -0.68605 0.891513

HAR-OVX-ADS 4.421342 -6.37209 -5.33188 -5.86268 -3.58658

HAR-OVX-USFSI 11.94351 -3.98232 -4.87983 -4.54381 -1.72999

HAR-OVX-OTHERFSI 6.209019 1.974884 -7.14553 -8.50208 -3.0255

HAR-OVX-EMERGFSI 5.542214 -5.88071 -2.03655 -1.45384 1.91698

HAR-OVX-VIX 14.37264 0.846483 -3.95023 -2.99978 0.665908

HAR-OVX-VXD 11.82085 -2.93133 -4.32969 -4.12689 -1.7715

HAR-OVX-VXN 2.662846 0.274656 -2.02537 -2.27084 2.089364

DMA-UNC 14.42257 0.827353 -2.00551 1.711517 3.56313

DMA-FSI 8.064451 -1.93874 -3.47887 -1.17467 -3.49676

DMA-IV 20.37837 1.538986 -5.8583 -1.81237 -1.4791

DMA-ALL 25.84689 10.12662 -3.36809 3.293883 6.420323

Table 3.5 The figures refer to percentages. When the value is positive, it means that
the corresponding model generates higher trading returns compared to the HAR-RV
model.
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Annualized cumulative differences in trading returns (all vs HAR-OVX)

Days ahead 1 5 10 15 22

RW -14.48038231 -17.6358 -12.5198 -11.9882 -8.21594

AR(1) -12.4958594 -12.1586 -6.63311 -6.6676 -2.18967

HAR-RV -3.268394224 4.105765 3.513359 2.54182 0.080991

HAR-OVX-GPR 5.06226805 2.996084 3.546176 3.893151 2.629676

HAR-OVX-EPU -0.170648775 1.727819 3.583349 1.855768 0.972505

HAR-OVX-ADS 1.152948122 -2.26632 -1.81852 -3.32086 -3.50559

HAR-OVX-USFSI 8.675111846 0.12345 -1.36647 -2.00199 -1.649

HAR-OVX-OTHERFSI 2.940624693 6.080649 -3.63217 -5.96026 -2.94451

HAR-OVX-EMERGFSI 2.27381976 -1.77494 1.476811 1.087977 1.997972

HAR-OVX-VIX 11.10424621 4.952248 -0.43687 -0.45796 0.746899

HAR-OVX-VXD 8.552455086 1.174438 -0.81633 -1.58508 -1.69051

HAR-OVX-VXN -0.605547928 4.380421 1.487984 0.270975 2.170355

DMA-UNC 11.154176 4.933118 1.507849 4.253337 3.644121

DMA-FSI 4.796057147 2.167021 0.034492 1.367149 -3.41577

DMA-IV 17.10997702 5.644751 -2.34495 0.729451 -1.39811

DMA-ALL 22.57849562 14.23239 0.145271 5.835702 6.501315

Table 3.6 The figures refer to percentages. When the value is positive, it means that
the corresponding model generates higher trading returns compared to the HAR-
OVX model.
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3.8 Conclusion

Due to the fact that academics, investors and policy makers have shown great interest in oil

price volatility, this study aims to fill the gap and answer the question "Which is the impact of

the uncertainty environment on oil price volatility?". First of all, we started by categorizing the

different indicators into uncertainty classes, and both individual models and combinations of

those models are implemented through the DMA method. This chapter aims to extract in-

formation that no existing study has obtained by gathering all the uncertainty indicators in a

modelling framework. The proposed models are based on the HAR-OVX model specification,

since OVX is observed to be information-rich for future oil price volatility. One of the findings

of this chapter is that the latter statement holds but only at short-run horizons. The HAR-OVX

model does not provide additional information over the simple HAR structure specification at

longer forecasting horizons.

At first, regarding short-run horizons, we conclude that DMA approaches including all in-

dicators and especially the implied volatility indices that have been used in this study outper-

form the remaining models not only with respect to statistical evaluation techniques but also

under a simple trading strategy that is performed in trading USO. The results of this trading

strategy show that when combining all the uncertainty indicators under a DMA method, the

cumulative returns are higher than 100% at the end of the out-of-sample forecasting period,

which can be really useful for investors and professional forecasters.

Regarding mid- and long-run horizons, it is shown not only from the two loss functions

and the MCS test, but also from the results of the trading strategy on USO, that the impact

of geopolitical risk and economic policy uncertainty indices is high and the models including

those factors, namely the individuals and the DMA-UNC, provide higher predictive accuracy

compared to the remaining models.
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Finally, it is recommended that forecasters should take into account the fact that implied

volatility indices, namely the VIX, VXD and VXN, enhance the predictive accuracy of oil price

volatility at short-run horizons, while the economic policy uncertainty and geopolitical risk

indices are information-rich at mid- and long-run horizons. It is remarkable that the finan-

cial stress indices across regions do not significantly improve the forecasting ability especially

for mid- and long-run horizons. Therefore, each of the uncertainty classes that are proposed

plays a different role in forecasting oil price volatility. Finally, the proper combination of the

aforementioned indicators is considered crucial for forecasting oil price volatility and can also

generate high trading returns.

The results of this chapter indicate some interesting directions for future research. First,

the implementation of additional combination techniques could be really interesting for both

academics and investors. In addition to this, to investigate the impact of the uncertainty indi-

cators in forecasting crude oil volatility index (OVX) would be a worthwhile research topic.
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Chapter Four

Hedging opportunities for crude oil volatility

4.1 Introduction

In this chapter, the time-varying correlations between crude oil volatility and volatility mea-

sures of other three major asset classes are examined. There are published papers focusing

on the relationship and the co-movements between crude oil and representatives of other as-

set classes, such as foreign exchange and stock markets. These interactions between crude

oil, stock, foreign exchange markets and the market related to the macroeconomic conditions

could be beneficial for investors that take positions on crude oil volatility and this is a primary

target for investigation in this study. Nowadays, hedging is considered important for crude oil

due to the high levels of volatility. Apart from the fact that most crude oil investors look for

efficient hedging strategies in order to reduce the risk of their portfolios, they also focus on

how to maximize their returns, which is not investigated in this study.

In this study, we examine whether hedging opportunities could be created by identifying

the co-movements of crude oil and other assets and using them not only to compute the op-

timal portfolio weights as a hedging strategy, but also to measure the hedging effectiveness

between the crude oil volatility and the volatility of the three major asset classes, namely the

stock, the foreign exchange market and the market related to the macroeconomic conditions.

It is important to mention that we focus on volatility and not on returns, since academics,
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investors and policy makers concentrate their attention on the global uncertainty, which is in-

creased during the covid-19 crisis and, more specifically, due to the fact that crude oil has faced

large deviations in recent years. During the Global Financial Crisis of 2007-2009, oil prices fluc-

tuated from about $60 to $145 and then dropped again to $30. Moreover, during 2014-2015, oil

prices reduced by more than 75%, which is a signal that not only investors but also academics

should give more attention to crude oil volatility, which has experienced large ups and downs.

It is important to mention the fact that due to the uncertainty of the global environment, a

modeling framework that takes into account the time variation of the co-movements between

the realized volatility of crude oil and the realized volatility measures of the other assets is

implemented. The methodological framework, then, consists of the so called Dynamic Condi-

tional Correlation model (DCC). The DCC model is used to capture the correlation clustering in

financial time series and provides us with the conditional variance-covariance matrix, which

will be used for the calculation of the optimal portfolio weights in different portfolios always

including as an asset the WTI crude oil volatility. To the best of our knowledge, there is only one

study focusing specifically on the correlation between crude oil volatility and volatility mea-

sures of several currencies by implementing the Diagonal BEKK model in order to estimate the

time-varying correlations. However, the DCC model is considered to capture the problem of

"curse of dimensionality" in multivariate modeling more efficiently. It also provides us with

the ability to estimate the elements of the conditional variance-covariance matrix with several

GARCH specifications by capturing the one best fitting to the characteristics of the time series,

which is realized volatility in this case.

The main goal of this chapter is motivated by the work of Olstad et al., 2020, who inves-

tigate the dynamic correlations between the volatility measures of two oil benchmarks (both

WTI and Brent) and six currencies, through a diagonal BEKK model. In this study, we enhance

and extend their work by expanding the asset classes and not focusing exclusively on curren-
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cies, which represent the foreign exchange market. Moreover, high-frequency data is used in

order to estimate a more accurate volatility estimator, which is the widely used realized volatil-

ity. To the best of our knowledge, there is no existing research focusing on the potential hedg-

ing opportunities of these asset classes (stock and foreign exchange markets and the market

related to macroeconomic conditions) and conducting comparisons among them when refer-

ring to the interactions between crude oil volatility and the volatility of each of the other asset

classes. For the assessment of whether these co-movements could be beneficial for crude oil

volatility investors, a specific risk management strategy is applied, namely the optimal port-

folio weights for two-asset portfolios that include WTI crude oil volatility by default and each

one of the above mentioned volatility measures of the other three assets.

The main contribution of this chapter is the investigation of whether crude oil volatility

could be hedged appropriately by using information from volatility measures of representa-

tive assets of stock market, foreign exchange market and the market related to macroeconomic

conditions. Another contribution is the use of realized volatility as volatility measure instead of

using conditional volatility or stochastic volatility, since a large number of studies have shown

that realized volatility is a more accurate estimator for volatility and it is proved to produce

better volatility forecasts (Engle & Sun, 2007; Hansen & Lunde, 2005; Tay et al., 2009). The

attention of academics, investors and professional forecasters, in general, has been concen-

trated on realized volatility (Haugom et al., 2014; Phan et al., 2016; Prokopczuk et al., 2016; Sévi,

2014; Wen et al., 2016). More specifically, for the case of crude oil volatility, there are several

studies focusing on the use of realized volatility in order to capture the intra-day information

(Degiannakis & Filis, 2017; J. Liu et al., 2018; F. Ma et al., 2017; Prokopczuk et al., 2016). Finally,

the findings that come to the conclusion of whether and which asset class can offer gains to

crude oil volatility investors are also considered of major importance and fill the gap in the

relevant literature.
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The rest of the chapter is structured as follows. Section 4.2 reviews the existing relevant

literature and gives more details on the theoretical background that the chapter is based on.

Section 4.3 provides a detailed description of the data and the estimation of the realized volatil-

ity. Section 4.4 elaborates on the methodological part by providing details on the DCC-GARCH

model specification, the calculation of the optimal portfolio weights and the hedging effective-

ness, while Section 4.5 analyses the results of this study. Section 4.6 concludes the study and

shares ideas for future research on this topic.

4.2 Theoretical background - Literature review

The theoretical background of this chapter consists of several parts but it mainly focuses on

the relationship between crude oil volatility and volatility measures of other three major asset

classes that comprise the financial markets, namely the stock market, the foreign exchange

market and the market related to macroeconomic conditions. Thus, it is considered of vital

importance to provide further details on the relationships between these assets and how they

can be interconnected. Apart from these relationships, the most widely used methodological

frameworks are presented in this section of the chapter and more details on the way that aca-

demics have implemented these econometric methods. Moreover, recent literature has come

up with several ways to identify whether hedging crude oil can be beneficial for investors and

stakeholders, in general. More specifically, in this study, we focus on opportunities related to

risk reduction that could arise from using realized volatility of different asset classes in order

to hedge crude oil realized volatility efficiently.
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4.2.1 Relationship between crude oil and stock market

There are several papers focusing on the relationship between crude oil and stock markets at

the level of returns. More specifically, Filis and Chatziantoniou, 2014 concentrate on aggre-

gated stock market indices by also considering other macroeconomic variables, such as inter-

est rates, industrial production and unemployment, in the structure of Vector Autoregressive

(VAR) models. In contrast, there are studies that use a very common model for the identifica-

tion of oil price effects on stock market, which is the well-known GARCH(1,1) model (Arouri &

Nguyen, 2010; Broadstock et al., 2014). However, several authors investigate the time-varying

relationship between oil and stock markets by using multivariate GARCH models, such as the

BEKK model or the DCC model proposed by Engle, 2002. These studies include those of Filis et

al., 2011 and Degiannakis et al., 2013. It is also important to mention that all the above papers

use monthly data for the crude oil returns.

4.2.2 Relationship between crude oil and foreign exchange market

Apart from the relationship between crude oil and stock markets, the relationship of crude

oil and foreign exchange markets is investigated at the volatility level. Regarding the literature

that concentrates on returns level, there are several papers, such as Krugman, 1980, Aloui et al.,

2013, Beckmann and Czudaj, 2013a, 2013b, which focus on the relationship of crude oil and

foreign exchange markets at returns level using static frameworks. More specifically, Krugman,

1980 develops a simple model that takes into consideration some of the channels through

which oil price changes affect exchange rates. Aloui et al., 2013 investigate the dependence be-

tween crude oil prices and U.S. dollar exchange rates using a copula-GARCH methodological

approach and they provide evidence of significant dependence for almost all the oil-exchange

rate pairs considered in their study. Beckmann and Czudaj, 2013a discriminate between long-

110



and short-run dynamics of the relationship between crude oil prices and dollar exchange rates

and conclude that this relationship is time-varying, suggesting that nonlinearities are an im-

portant issue when analyzing oil prices and exchange rates. In another paper, Beckmann and

Czudaj, 2013b extend their previous study by showing that the results depend on which mea-

sure for exchange rate has been selected. Moreover, it plays a crucial role whether the time-

varying relationship mainly runs from nominal exchange rates to nominal oil prices, or vice

versa.

4.2.3 Relationship between crude oil and global macroeconomic conditions

In this chapter, we also focus on the relationship between crude oil realized volatility and

volatility measure of the macroeconomic environment, which has not been examined exten-

sively, in terms of volatility, so far. According to Yang and Zhou, 2017, the U.S. treasury bill yield

represents the U.S. short-term interest rate. It is directly interconnected with the stock market

volatility as written by Bailey and Stulz, 1989 and Bekaert et al., 2009. Furthermore, there is

evidence that short-term interest rates forecast subsequent changes in the Fed’s announced

target rate (Fama, 2013; Hamilton & Oscar, 2002). This suggests that the U.S. short-term inter-

est rate reflects the market’s expectation of one dimension of the Fed’s future monetary pol-

icy stance and, therefore, can be used as a representative of the asset class that is related to

macroeconomic conditions.

4.2.4 Hedging strategies

The reason why academics and investors focus on hedging strategies comes from the fact that

the need for reduction of their portfolios’ risk is of major importance, since they need protec-

tion for their positions. A constant asset allocation of a portfolio over time would not allow for

minimizing the portfolio variance and maximizing returns. However, this can be done by im-
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plementing a dynamic optimal portfolio strategy, which is applied in the current study, even

if such a dynamic hedging strategy could result in high transaction costs. Apart from the op-

timal portfolio weights, there are optimal hedging ratios (conditional and unconditional) that

are implemented for risk management purposes. The conditional optimal hedge ratios could

be considered more precise but due to the frequent re-balancing, they require more trans-

action costs, and therefore lower profits (Cotter & Hanly, 2012; Fan et al., 2016). Recently,

there are studies that capture time-variation in their optimal hedging strategies. For exam-

ple, Basher and Sadorsky, 2015 examine the performance of the optimal hedging ratios, based

on time-varying volatility models and conclude that these hedging ratios constructed by tak-

ing into account the time-variation perform better. Furthermore, Alizadeh et al., 2008 show

that optimal hedging ratios, which are estimated by using dynamic conditional GARCH, MRS-

GARCH and MRS-BEKK models yield better results compared to those that are estimated by

using constant models. In this regard, this study is motivated by these findings and the use

dynamic models for conditional volatility is preferred.

4.3 Data

4.3.1 Data description

This study focusing on realized volatility measures of different asset classes uses intra-day data

for the WTI crude oil prices (WTI), the S&P500 index (SP500), the U.S. Dollar index (USDX)

and the U.S. T-bills (TBILLS). Following Andersen, Bollerslev, Diebold, et al., 2003; Andersen

et al., 2007 and several more recent studies (Degiannakis & Filis, 2017; Sévi, 2014; Yao et al.,

2019), the time-series of the realized volatility measures are then constructed using 5-minute

intra-day data of the front-month futures contracts for the WTI crude oil, the S&P500 index

as a representative asset for the stock market asset class, the U.S. Dollar index as the repre-
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sentative of the foreign exchange market and the U.S. T-bills as a representative asset of the

macroeconomic conditions. The sample period of this dataset starts from 4th January 2010

to 30th October 2017 and the daily realized volatility measures are constructed by using the

common sample of the aforementioned representatives of the assets classes. Finally, all data

are obtained from TickData.

4.3.2 Realized volatility estimation

In this chapter, we also work with annualized realized volatility series, which is defined as

ARVt .

Table 4.1 gives a summary of the descriptive statistics for all realized volatility measures of

the different assets used in this study. We first observe that the mean of WTI crude oil realized

volatility is higher than those of the other assets, with S&P500 the second highest. However, we

see that S&P500 realized volatility is more volatile with higher coefficient of variation than WTI

realized volatility. Moreover, the evolution of the volatility time series are portrayed in Figure

4.1.
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Realized volatility measures WTI S&P500 USDX TBILLS

Mean 28.31 12.96 6.86 5.02

Median 25.68 11.02 6.42 4.51

Minimum 4.66 1.60 1.44 1.71

Maximum 98.97 87.89 31.14 21.41

Std. Dev. 12.50 7.67 2.64 1.93

Skewness 1.58 2.66 1.45 2.44

Kurtosis 6.59 16.57 8.29 13.58

Coefficient of Variation 0.44 0.59 0.39 0.39

Table 4.1 Descriptive statistics of the realized volatility measures used in this study.
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4.4 Methodology

4.4.1 DCC-GARCH model

In this study, the DCC-GARCH model of Engle, 2002 is used to estimate the conditional correla-

tions between crude oil realized volatility and realized volatility of the other three asset classes.

Let yt be a 4x1 vector of volatility measures meaning yt = [ARV (W T I )
t , ARV (SP500)

t , ARV (U SD X )
t ,

ARV (T B I LLS)
t ]1.

The model is expressed as follows:

yt =µ+εt , for t = 1, . . . ,T

εt = H 1/2
t zt

(4.1)

Ht is a 4x4 positive definite conditional covariance matrix of yt and zt is an 4x1 i.i.d random

vector of errors. It is also important to note that the DCC-GARCH model of Engle, 2002 is

estimated in two steps. First, the GARCH parameters are estimated. Second, the conditional

correlations are estimated. The conditional covariance matrix Ht is defined as follows:

Ht = D t Rt D t . (4.2)

Rt is the conditional correlation matrix and D t is a diagonal matrix with time-varying stan-

dard deviations on the diagonal.

D t = diag(h1/2
1,t , . . . ,h1/2

4,t ) (4.3)

Rt = (diagQt )´1/2Qt (diagQt )´1/2 (4.4)
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The elements hi ,t of the Ht covariance matrix are modeled using the GARCH(1,1) model1

and can be written as:

hi ,t =αi ,0 +αi ,1ε
2
i ,t´1 +βi hi ,t´1, for i = 1, . . . ,n. (4.5)

Moreover, to ensure that Rt will be invertible and positive definite, Qt is modeled as:

Qt = (1 ´ a ´ b)Q +azt´1z 111
t´1 +bQt´1 (4.6)

where the parameters a and b are non-negative such that a+b<1 and Q is the 4x4 unconditional

correlation matrix of the standardized residuals zi ,t = εi ,t?
hi ,t

. The correlation estimator is then

calculated as:

ρi , j ,t =
qi , j ,t

?
qi ,i ,t q j , j ,t

(4.7)

Figure 4.2, which depicts the evolution of the dynamic correlations over time, gives the

sense that all realized volatility measures are positively correlated across almost the entire

sample.

1It is noted that various specifications of the DCC model have been estimated, such as DCC-GARCH, DCC-GJR

and DCC-EGARCH; DCC-GARCH(1,1) has been selected to produce the variance-covariance matrix, since it meets

all the statistical assumptions required.
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4.4.2 Optimal portfolio weights

After having estimated the variance-covariance matrix of the realized volatility of crude oil and

the other representatives of the main asset classes studied, it can be useful for volatility traders

to estimate the optimal portfolio weights, which could help them protect their positions. The

methodology implemented in this study has been used by several studies (Antonakakis et al.,

2018; Hammoudeh et al., 2010; Syriopoulos et al., 2015) and assumes a $1 USD portfolio, which

consists of two assets. The first asset is the crude oil realized volatility and the second one is the

realized volatility of the other asset classes. The calculation of the optimal portfolio weights is

given by the following system of equations:

w AC ,t =



0 if σ2
W T,t ´σW T,AC ,t

σ2
AC ,t+σ2

W T,t ´2σW T,AC ,t
< 0

σ2
W T,t ´σW T,AC ,t

σ2
AC ,t+σ2

W T,t ´2σW T,AC ,t
if 0 < σ2

W T,t ´σW T,AC ,t

σ2
AC ,t+σ2

W T,t ´2σW T,AC ,t
< 1

1 if σ2
W T,t ´σW T,AC ,t

σ2
AC ,t+σ2

W T,t ´2σW T,AC ,t
> 1

(4.8)

where w AC ,t is the optimal weight in crude oil to be held by a two-asset portfolio. Moreover,

in order to investigate and compare the performance between the optimal portfolio weights

and the optimal hedging strategy, it is required to estimate the conditional variance of the

portfolio constructed by using the optimal portfolio weights. This computation is given by the

following equation:

σ2
OP,t = w2

W T,tσ
2
W T,t +w2

AC ,tσ
2
AC ,t +2wW T,t w AC ,tσW T,AC ,t (4.9)

where σ2
OP,t denotes the conditional variance of the constructed portfolio.

Figures 4.4, 4.5 and 4.6 portray the conditional standard deviation obtained by the DCC-

GARCH model for the single-asset portfolios and the two-asset portfolio constructed using the
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optimal portfolio weights. What is observed from these figures is that for all cases the standard

deviation of the constructed portfolio is lower compared to the respective values for the single-

asset portfolio.
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4.4.3 Hedging effectiveness

An alternative risk management approach for an efficient hedging strategy is the hedging ef-

fectiveness ratio, which indicates the success of the hedging strategy in minimizing the risk of

the hedged portfolio. The higher the ratio is, the higher the risk reduction. The estimate of the

hedging effectiveness ratio is given by the following equation:

HE =
[

VU H ´VH

VU H

]
(4.10)

where VU H is the variance of a portfolio comprised of a single asset volatility, while VH is the

variance of an optimally weighted or optimal hedged portfolio which consists of crude oil

volatility and the volatility of another asset class.

Finally, for robustness purposes, we also assess the results of the optimal portfolio weights

strategy in a highly volatile period (from 01/12/2014 to 18/03/2016), which covers the oil col-

lapse in 2014-2015, and a tranquil period (from 01/03/2017 to 31/10/2018).

4.5 Empirical findings

Regarding the time-varying correlation of WTI crude oil volatility and the volatility of the other

assets, one first observation is that the correlation is almost always higher than 0 without much

variation across time. It is also easily visible that the correlation of WTI crude oil volatility

and the U.S. T-bills as well as the S&P500 appears to be highly volatile whereas the case of the

correlation of WTI crude oil volatility and the volatility of U.S. dollar index seems to be more

time-varying over time. Some of the variations appearing to the correlation time series of WTI

and foreign exchange markets could be justified by geopolitical events that occurred (e.g. the

political upheaval in Libya, Yemen and Bahrain during the period 2011-2012).
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One of the main contributions of this study is the investigation of potential hedging op-

portunities between WTI and other assets, which represent the main asset classes, namely the

stock market, the foreign exchange market and the market reflecting macroeconomic condi-

tions. Thus, in order to assess these opportunities, we compute the optimal weights of a two

asset portfolio, which consists of WTI crude oil volatility and the volatility of the other three as-

set classes under investigation. Figure 4.6 shows the evolution of the optimal portfolio weights

for the three assets that are examined for their hedging power to WTI crude oil volatility over

the entire sample. From the relevant graph, it is obvious that S&P500 takes values from 0%

to 100% and its time series is time-varying with many variations over time. Moreover, from

Table 4.2, it is evident that the highest proportion is given to U.S. T-bills (average daily value

98%) and the U.S. dollar index (average daily value 96.9%), which can be explained by the fact

that WTI crude oil volatility is significantly higher relative to volatility of the U.S. dollar index

and U.S. T-bills. It is observed that in the case of S&P500, the minimum value for the optimal

weight is 0%, which is not the case for the other two assets, namely the U.S. dollar index and

the U.S. T-bills, where the minimum values do not fall under 63%. As mentioned above, the

optimal weight time series for S&P500 is highly volatile with higher standard deviation (ap-

proximately 0.25) relative to the other assets. From Table 4.2, we draw the conclusion that the

portfolio standard deviation is reduced for all portfolios. However, the portfolio risk could be

reduced at a higher level when optimal weights are allocated to the WTI - TBILLS portfolio,

which seems to perform better in terms of minimized portfolio standard deviation.
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Portfolio weights Portfolio standard deviation

Portfolio WTI Other asset Optimal portf. One-asset portf. HE (%)

Entire period

WTI - S&P500 0.212 0.788 5.599 10.775 - 6.382 62.1 - 14.8

WTI - USDX 0.031 0.969 2.495 10.775 - 2.541 91.3 - 3.3

WTI - TBILLS 0.020 0.980 1.863 10.775 - 1.896 95.0 - 2.7

Volatile period

WTI - S&P500 0.132 0.868 5.936 18.147 - 6.442 80.6 - 12.6

WTI - USDX 0.015 0.985 2.977 18.147 - 2.992 91.8 - 1.1

WTI - TBILLS 0.011 0.989 1.838 18.147 - 1.855 97.1 - 1.9

Tranquil period

WTI - S&P500 0.302 0.698 5.688 8.407 - 7.048 47.7 - 20.7

WTI - USDX 0.014 0.986 2.168 8.407 - 2.181 92.0 - 1.1

WTI - TBILLS 0.009 0.991 1.773 8.407 - 1.779 94.6 - 0.7

Table 4.2 The overall performance, including the relevant portfolio weights and the
portfolio standard deviation, of the optimal portfolio weights strategy in addition to
the results for hedging effectiveness of the constructed portfolios.
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In regard to the hedging effectiveness that is applied for risk management purposes, and

more specifically for understanding the success level of the hedging strategy, it holds true that

TBILLS seems to perform better for hedging WTI crude oil volatility. The hedging effective-

ness for WTI crude oil volatility reaches 95% at the WTI-TBILLS portfolio, whereas the same

measure is 91.3% for USDX, which is evidence for an efficient hedging of WTI crude oil volatil-

ity. In contrast, hedging effectiveness for the WTI - S&P500 portfolio is not considered ade-

quate enough (approximately 62%), which gives the sense that S&P500 could not be an effi-

cient hedger for WTI in terms of volatility.

Finally, it is interesting to mention that the reduction of the portfolio variance is particu-

larly beneficial for WTI crude oil volatility investors given the fact that the hedging effective-

ness against the unhedged asset portfolio ranges from 62% to 95%. Nevertheless, this state-

ment does not hold true for the other asset classes volatility investors, since the hedging effec-

tiveness is 14.8%, 3.3% and 2.7% for SP500, USDX and TBILLS, respectively. One key finding is

that the hedging effectiveness increases during high volatile periods, which provide investors

with information on how they can reduce their portfolio’s risk and maximize their returns. In

contrast, during more tranquil periods, the optimal portfolio weights strategy seems to create

less hedging opportunities for WTI crude oil volatility, since hedging effectiveness is reduced.

4.6 Conclusion

This chapter examines whether there are hedging opportunities between WTI crude oil volatil-

ity and volatility measures of three other assets classes, namely the stock and foreign exchange

markets and the market reflecting macroeconomic conditions, employing a dynamic con-

ditional correlation model which captures time-variations in the correlation of the volatility

time series. By employing this methodology, the variance-covariance matrix is used for imple-
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menting a hedging strategy based on the computation of the optimal portfolio weights. The

empirical findings reveal that using the optimal portfolio weights in the WTI - TBILLS portfo-

lio is beneficial for WTI crude oil volatility investors with hedging effectiveness reaching 95%.

The U.S. dollar index is also considered an efficient asset for hedging WTI crude oil volatil-

ity, whereas S&P500 could be less appropriate for hedging purposes with hedging effective-

ness ranging from 47.7% to 80% for volatile and tranquil periods, respectively. In this regard,

from this chapter, we draw the conclusion that the optimal portfolio weights hedging strategy

can be beneficiary and useful for WTI crude oil volatility investors and more specifically for

the volatile periods. However, another finding of this chapter is that there is no evidence for

hedging opportunities for USDX and TBILLS in a two-asset portfolio with allocated weight to

WTI crude oil volatility. The hedging effectiveness for these two portfolios (WTI - USDX and

WTI - TBILLS) ranges from 2.7% to 3.3%. The finding of this chapter can be considered really

useful not only for investors but also for academics and policy makers, since crude oil is an

asset which is considered of major importance for the global economy and therefore several

stakeholders could be interested in exploring how WTI crude oil volatility could be hedged ef-

ficiently. One suggestion for future research is to focus not only on minimizing the portfolio’s

risk but also on maximizing returns or, from a regulatory perspective, on using these hedging

strategies to estimate more efficiently Value-at-Risk. Finally, for robustness purposes, simi-

lar methodology could be employed for alternative assets as the representatives of these asset

classes.
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Chapter Five

Is oil price volatility important for the U.S.

economy?

5.1 Introduction

Recent years, it is observed that the attention of researchers, investors and policy makers have

been attracted by the evolution of crude oil volatility. Oil prices are subject to shocks driven

by both supply and demand sides. Hamilton, 2009 studies the consequences of oil shocks for

the economy and found that the oil shocks of 2007-2008 had a significant effect on consump-

tion spending and purchases of automobiles. This can be justified by another study (Kilian &

Vigfusson, 2017), which investigates the role of oil price shocks in causing U.S. recessions. In

the latter study, the authors suggest that the recessionary effects of oil price shocks are modest

and they suggest that unprecedented declines in the oil price should have strong effects on

the economic outlook. These kind of episodes have been extensively investigated in several

studies (Baumeister & Kilian, 2016; Edelstein & Kilian, 2007, 2009).

More specifically, the relationship between the oil price uncertainty and the macroecon-

omy has been studied in depth with the work of Ferderer, 1996 to be among the first published

papers that concentrate on this relationship. In his study, he provides evidence that the stan-

dard deviation of oil prices can offer predictive information on the U.S. output growth. More-

over, he finds that the asymmetric relationship between oil prices and economic growth holds
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true in the case of oil price volatility. A crucial conclusion of the latter study is that oil price

volatility has data-rich information for industrial production forecasts. In this chapter, we rely

on the aforementioned statement and the purpose of this study is to investigate in depth the

impact of not only the crude oil volatility, but also volatility measures of other markets, on

the economic growth and more specifically on several disaggregated measures of industrial

production. To the best of our knowledge, there is only one investigation (Elder, 2018), which

focuses on the impact of oil price volatility on disaggregated measures of industrial produc-

tion. The results of the aforementioned study indicate that the impact of oil price volatility is

stronger in activities related to primary energy production and oil and gas drilling. However,

these results come from an in-sample analysis without implementing a forecasting framework,

which is the primary purpose of the present research.

There are several papers concentrating on the effect of oil prices on measures of the eco-

nomic outlook. For example, Elder and Serletis, 2010 study the impact of the oil price uncer-

tainty on several macroeconomic variables, such as investments, consumption and aggregate

output, which is found to be negative and statistically significant. There are also studies focus-

ing on the relationship between oil price volatility and macroeconomic indicators of specific

countries. Rafiq et al., 2009 study the aforementioned relationship in the case of Thailand and

find that there is causality running from oil price volatility to investment, unemployment rate,

interest rate and trade balance. This impact seems to be short-lived and is mitigated after the

financial crisis. Lardic and Mignon, 2006 study the relationship between oil prices and GDP

in several European countries and provide evidence for an asymmetric co-integration. This

asymmetric relationship is also investigated by Serletis and Mehmandosti, 2017, who find that

the responses of economic growth to positive and negative oil price shocks does not offer in-

formation on whether there are asymmetries or not. Another work of van Eyden et al., 2019

studies the impact of oil price volatility on GDP growth for 17 member countries of the OECD.
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The results of the latter study are similar to the other studies with the main finding being that

oil price volatility has a negative and statistically significant impact on economic growth.

In this chapter, we primarily aim to find whether oil price volatility has predictive power

on U.S. industrial production and more specifically on several disaggregated measures of in-

dustrial production in an out-of-sample analysis. As far as we are aware, there is no published

work doing that. However, there are studies that investigate the relationship between oil price

volatility and industrial production. For example, Jo, 2014 suggests that a shock of oil price un-

certainty has negative impact on world industrial production. More specifically, high oil price

uncertainty can significantly respond to decline in industrial production growth. Serletis and

Istiak, 2013 is another study that aims to draw a conclusion on whether the relationship be-

tween oil prices and industrial production is symmetric for the G-7 countries and they provide

different results for the countries under investigation. For the U.S., Romero-Meza et al., 2014

study the aforementioned relationship and conclude that there is a nonlinear and asymmetric

relationship between oil prices and industrial production, and more interestingly there is evi-

dence that oil prices lead U.S. industrial production. A more recent study of Alao and Payasli-

oglu, 2021 investigates the comovement of oil price volatility and industrial production in oil-

exporting countries, such as Mexico and Brazil, and provide evidence for a dynamic linkage,

which is temporary. Furthermore, Nonejad, 2021 in an out-of-sample investigation finds that

oil prices do not provide forecast accuracy gains when developing models to forecast indus-

trial production, which is explained by model misspecifications and not the fact that oil prices

lack predictive information.

The index of industrial production, which is the most important macroeconomic indica-

tor sampled at high frequency, is considered of vital importance for forecasting the short-term

evolution of GDP globally. The frequency of the data used in studies that develop modeling

frameworks for industrial production is mainly monthly, since this is the highest frequency
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at which industrial production is available. Moreover, all the potential drivers of the target

variable, namely industrial production, are at the same frequency. Byers and Peel, 1995 im-

plement non-linear autoregressive models to forecast industrial production for six countries

and confirm that the time series appear to exhibit non-linearity. In terms of forecasting ac-

curacy, Bodo et al., 2000 apply a wide range of models including ARIMA, VAR and conditional

models, and find that a conditional error-correction model outperforms the competing mod-

els when generating industrial production forecasts. All these studies use monthly data for

both the dependent and the explanatory variables. Moreover, Kawasaki and Franses, 2004 as-

sume seasonal unit roots in the models used and find that this incorporation can contribute to

more accurate industrial production forecasts. Another approach used for forecasting indus-

trial production is that of Hassani et al., 2009, 2013, which is called singular spectrum analysis

and seems to outperform the widely used ARIMA models at longer horizons.

However, in the present study, an alternative approach is implemented in order to generate

out-of-sample industrial production forecasts. Over the last decades, research has focused on

the role of the stock markets in measures of economic growth (King & Levine, 1993; Levine

et al., 2000). In order to incorporate information coming from a higher frequency, a mixed

frequency time series (MIDAS) methodological framework is implemented, initially proposed

by Ghysels et al., 2006, which gives us the ability to use variables at daily frequency as drivers

of the monthly industrial production. More specifically, a MIDAS model is developed in order

to investigate the impact of oil price volatility measures sampled at daily frequency on the

U.S. industrial production sampled at monthly frequency. Pan et al., 2018 use oil prices to

forecast the U.S. real GDP by introducing a time-varying parameter MIDAS model and find that

the proposed MIDAS model can outperform the competing models including a simple OLS

regression. To the best of our knowledge, there is no other study investigating the impact of

daily oil price volatility measures (constructed using intra-day data) on the monthly industrial
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production in the U.S. Therefore, this is considered to be the main contribution of our study

to the literature. Apart from the methodological framework, the impact not only of oil price

volatility but also of S&P500 realized volatility and other assets’ realized volatility on industrial

production growth is investigated in order to compare their predictive information.

As a key finding, we consider the fact that the crude oil realized positive semivariance has

predictive power for industrial production and more specifically the energy related dissagre-

gated measures of industrial production. Moreover, this study provides evidence for strong

performance of the MIDAS modeling framework by incorporating daily volatility measures

compared to a model that is limited to the inclusion of macroeconomic variables at the fre-

quency of the target variable. Finally, it is observed that the exogenous variables that are added

in the proposed model do not offer any additional predictive information.

The remainder of the chapter is structured as follows. In Section 5.2 we provide a brief de-

scription of the variables used in this chapter. In Section 5.3 the entire modeling framework

is presented and also the way that forecasts are generated. The evaluation framework is pre-

sented in Section 5.4, while in Section 5.5 we discuss the out-of-sample results. Finally, Section

5.6 concludes the study.

5.2 Description of the variables

In this section, the variables that are used in this study are described in detail. More specif-

ically, we start with the target variable, which is the U.S. industrial production and its dis-

sagregated measures. We then continue with the higher frequency variables, which are the

different volatility measures of crude oil market. For comparability reasons, the predictability

of other markets’ volatility measures, such as stock and foreign exchange markets, is tested.

Finally, several exogenous variables at monthly frequency which are included in the imple-
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mented models as potential drivers of the U.S. industrial production, are described below in

detail.

5.2.1 Industrial production and its disaggregated measures

In this chapter, we study the effect of oil price volatility measures on several components of

industrial production. These components are special aggregate indices of U.S. industrial pro-

duction and are compiled by the Federal Reserve Board1. These aggregates are grouped into

energy-related and non energy-related industrial production indices. The largest component

of the energy-related products is primary energy, which includes the extraction of crude oil,

natural gas, coal, and nuclear and hydroelectric power generation. Another component is the

drilling of oil and gas wells. Regarding the special aggregates for non energy-related produc-

tion, the largest component is that of consumer goods excluding both technology and motor

vehicles. Other important components of this group are motor vehicles and parts, and busi-

ness equipment excluding technology and motor vehicles. These measures of industrial pro-

duction are sampled at monthly frequency and the transformation applied in the logarithmic

time series is the first difference.

Figure 5.1 displays the evolution of logarithmic returns of each industrial production in-

dex used in this chapter. It is observed that the special aggregate of drilling oil and gas wells

is highly volatile compared to the remaining aggregates of industrial production. From Ta-

ble 5.1, we observe that only the mean value of business equipment excluding motor vehicles

is negative with an interestingly high level of coefficient of variation. All the remaining non

energy-related indices seem to be at the same level in terms of variation.

1For further details see: https://www.federalreserve.gov/releases/g17/current/default.htm.
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Industrial production measures Total index Energy total Primary energy Drilling oil and gas wells

Mean 0.1660 0.2565 0.4189 0.1055

Median 0.1942 0.3183 0.4685 0.8402

Minimum -0.7963 -2.6415 -2.2512 -16.6480

Maximum 1.5057 3.6460 3.3578 7.5801

Std. Dev. 0.4812 1.1547 1.1033 4.2090

Skewness 0.2010 -0.1045 -0.0486 -1.6645

Kurtosis 2.7299 2.9319 2.8585 7.0232

Coefficient of Variation 2.8986 4.5022 2.6341 39.8919

Jarque-Bera (p-value) 0.5000 0.5000 0.5000 0.0010

Non-energy total Consumer goods Business equipment Motor vehicles and parts

Mean 0.4613 0.1270 -0.0044 0.1654

Median 0.5184 0.0509 0.0726 0.1984

Minimum -8.3066 -1.0989 -1.3589 -2.0013

Maximum 8.9628 1.4290 1.7121 2.2838

Std. Dev. 3.1551 0.5282 0.5362 0.8777

Skewness -0.1309 0.2581 -0.0833 -0.2046

Kurtosis 3.5022 2.6820 3.3614 2.6218

Coefficient of Variation 6.8391 4.1599 -121.9147 5.3066

Jarque-Bera (p-value) 0.3825 0.3333 0.5000 0.3944

Table 5.1 Descriptive statistics for the dependent variables, namely the special ag-
gregates of industrial production in U.S.
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5.2.2 Realized volatility measures at daily frequency

In this study, the impact of crude oil realized volatility measures, constructed by intra-day data,

on industrial production indices is investigated. We are based on the calculation of the realized

volatility as noted in Chapter 2 and we use the annualized realized volatility, which is defined

as RVt . Moreover, in this study we use the daily positive and negative realized semi variance

estimators, which are defined as RSV (d+)
t and RSV (d´)

t , respectively.

All the aforementioned realized volatility measures are computed not only for WTI crude

oil (WTI), but also for other assets. More specifically, these assets are the S&P500 (SP500) index,

the U.S. dollar (DX) index and the U.S. T-bills (TBILL) and the respective realized volatility

measures are computed as in Chapter 4. Additional details on their descriptive statistics and

their evolution over time are presented in Table 4.1 and Figure 4.1, respectively.
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5.2.3 Predictors at monthly frequency

We define a group of variables as potential drivers of industrial production and its special ag-

gregates. More specifically, these variables are included on the right hand side of the MIDAS

regression as explanatory variables sampled at monthly frequency, which is the same as that

of each of the dependent variables, namely the several U.S. industrial production indices. This

group consists of two subcategories.

The first one includes core variables reflecting macroeconomy and the second one con-

tains some indicators that could effectively capture uncertainty. Regarding the first category

of variables, some macroeconomic variables that are used by previous studies to explain GDP

are included2. For example, one of the variables used to forecast macroeconomic variables is

term spread, defined as the 10-year treasury bond minus the 3-month treasury bill rate. An-

other important variable used in this chapter as a potential predictor for industrial produc-

tion indices is the default yield spread, defined as the BAA/AAA corporate bond yield spread.

A core macroeconomic variable that can potentially hold predictive information on indus-

trial production is the unemployment rate. The three above mentioned variables are extracted

from the Federal Reserve Economic Data (FRED) online database3. Apart from these variables,

some crude oil-related variables are incorporated in the methodology that are used for gener-

ating GDP forecasts (Nonejad, 2020a), since fundamentals of crude oil are potential drivers of

industrial production and its aggregates. These crude oil-related variables are the U.S. crude

oil production and the U.S. imports of crude oil, which are extracted from the Energy Infor-

mation Administration (EIA)4.

Moreover, indicators of uncertainty are investigated, which have been widely used in re-
2For further details see (Nonejad, 2020a, 2020b).
3Please find more details on the relevant link: https://fred.stlouisfed.org/.
4See https://www.eia.gov/petroleum/data.php for further details.
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cent years. These are the U.S. economic policy uncertainty (USEPU) index, the geopolitical

risk (GPR) index and the Partisan Conflict (PC) index. More specifically, the USEPU is based

on newspaper archives and is constructed by using the following components: News Cov-

erage about Policy-related Economic Uncertainty, Tax Code Expiration Data and Economic

Forecaster Disagreement. With regard to the first component, it is constructed by performing

monthly searches for terms, such as ’uncertainty’, ’economy’, ’congress’ and ’legislation’. The

second component relies on reports by the Congressional Budget Office (CBO) that compile

lists of temporary federal tax code provisions. The third and last one relies on data of the Fed-

eral Reserve Bank of Philadelphia’s Survey of Professional Forecasters. The second variable

included in the group of explanatory variables, namely the geopolitical risk (GPR) index, cap-

tures adverse geopolitical events by using newspaper articles covering geopolitical tensions5.

Finally, the PC index is added to the group of potential drivers. This indicator tracks the degree

of political disagreement among U.S. politicians by measuring the frequency of newspaper ar-

ticles reporting disagreement in a given month6.

The frequency of all the variables presented in this section is monthly and the data is ex-

tracted from the corresponding website as referred to in their description. The transforma-

tions applied to individual variables are described below:

• T10Y3M : first difference.

• BAA AAA: first difference.

• UNRATE : first difference of logarithmic transformation.
5More details on the construction of the index can be found at the following link:

https://www.matteoiacoviello.com/gpr.htm.
6For further details see https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/partisan-

conflict-index.
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• OILPROD: first difference of logarithmic transformation.

• OILIMPORTS: first difference.

Figure 5.2 displays the explanatory variables sampled at monthly frequency, which are

considered drivers of the U.S. industrial production measures.
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Macroeconomic variables T10Y3M BAA AAA UNRATE

Mean -0.0336 -0.0019 -0.8484

Median -0.0350 -0.0150 0.0000

Minimum -0.6800 -0.2400 -7.7558

Maximum 0.5300 0.2600 5.2644

Std. Dev. 0.1727 0.0777 2.3584

Skewness -0.1236 0.4255 -0.0819

Kurtosis 4.4460 3.9343 3.1122

Coefficient of Variation -5.1356 -40.9719 -2.7797

Jarque-Bera (p-value) 0.0147 0.0267 0.5000

Crude oil-related variables OILPROD OILIMPORTS

Mean 0.7136 -327.4741

Median 0.6563 -1475.5000

Minimum -2.7021 -55538.0000

Maximum 5.4857 55537.0000

Std. Dev. 1.7797 17838.7430

Skewness 0.4108 -0.1216

Kurtosis 2.6980 4.1232

Coefficient of Variation 2.4941 -54.4737

Jarque-Bera (p-value) 0.1029 0.0381

Uncertainty indicators USEPU GPR PC

Mean 0.5969 1.4784 0.3374

Median -0.5592 -1.5464 0.0084

Minimum -94.1313 -87.2815 -104.0498

Maximum 80.5879 161.3418 76.3591

Std. Dev. 27.2313 38.6360 24.7834

Skewness -0.2248 0.8127 -0.2640

Kurtosis 4.3211 5.6212 5.9216

Coefficient of Variation 45.6200 26.1342 73.4532

Jarque-Bera (p-value) 0.0181 0.0010 0.0010

Table 5.2 Descriptive statistics for the monthly explanatory variables used in this study, namely the
macroeconomic variables, the oil-related variables, including the oil production and imports of crude
oil, and the indicators of uncertainty.
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5.3 Methodology

5.3.1 Simple model

For comparison reasons between the proposed MIDAS model and more naive models, a sim-

ple regression is used to generate 1-day ahead forecasts of industrial production. This model

is written as:

yt =β0 +
p

ÿ

i=1

βi Li yt +ϵt , (5.1)

where yt is the industrial production index at day t , L is the lag operator used for simplicity7

and εt is a white noise. However, in this chapter a group of explanatory variables is added in the

model’s equation to explore whether the predictive ability of the models is enhanced. There-

fore, this enhanced model including macroeconomic, oil-related and uncertainty-related vari-

ables is the following:

yt =β0 +
p

ÿ

i=1

βi Li yt +
N

ÿ

j=1

ω j EV j
t +ϵt , (5.2)

where N is the number of variables used as potential drivers of the industrial production mea-

sures. Each explanatory variable is expressed as EV j
t at time t .

5.3.2 MIDAS modeling

Ghysels et al., 2004 built a new modeling framework that combines data from different fre-

quencies, namely the so-called mixed data sampling (MIDAS) approach. This approach is

used when the forecasters’ objective is to estimate a number of hyperparameters relative to a
7The number of lags is denoted by p and in this study is empirically chosen to be 3 after several runs.
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sampling rate of the higher frequency variable. MIDAS models have been widely used in or-

der to forecast quarterly macroeconomic time series by using as predictors monthly or even

daily data. In their study, Andreou et al., 2013 introduce regression-based methods in order

to forecast quarterly economic activity using daily financial data. Their methodology relies

on combinations of MIDAS regressions. Degiannakis, 2021 implements a MIDAS model to

produce nowcasting values for real investment sampled at quarterly frequency by adding in-

formation from the stock market, which is on a daily sampling frequency. In the current study,

we add information from daily realized volatility measures to the MIDAS model for predicting

monthly aggregated measures of industrial production. The ADL-MIDAS model can therefore

be written as:

yt =β0 +
p

ÿ

i=1

βi Li yt +γ
M
ÿ

k=1

B(k;θ)Lk
HF xt +ϵt , (5.3)

where the function B(k;θ) denotes the polynomial that determines the weights for the higher

frequency variable. It is important to mention that we use the same notation across the whole

modeling framework. Let yt denote the lower frequency variable, which is the aggregated mea-

sure of industrial production. Since lags of the dependent variable are included in the right

hand side of the equation, the lag operator L is used for simplicity reasons8. In practice, the

first lag of the dependent variable yt would be Lyt = yt´1, the second lag would be L2 yt = yt´2

and so on. Moreover, apart from the lags of yt , we are interested in the predictive information

of a higher frequency variable, xt , which is the realized volatility measure, sampled M times

between samples of the dependent variable yt . In this regard, lags of the higher-frequency

variable xt are included in the applied models by using LHF , which denotes the lag operator
8After several runs, the number of lags included on the MIDAS model was chosen to be three, meaning that we

incorporate information from the corresponding industrial production index 3 months before time t .
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for the higher-frequency variable9. For example, if yt is the dependent variable sampled at

monthly frequency and xt at daily frequency, LHF xt denotes the day before the realization of

the dependent variable at time t (i.e. the last day of the previous month).

Apart from the impact of the daily realized volatility measures for different assets, explana-

tory variables sampled at the same frequency as that of the dependent variable are also in-

cluded. This is an enhanced version of the MIDAS model, as was done above in the case of the

simple model. Therefore, the ADL-MIDAS-EX model is written as follows:

yt =β0 +
p

ÿ

i=1

βi Li yt +γ
M
ÿ

k=1

B(k;θ)Lk
HF xt +

N
ÿ

j=1

ω j EV j
t +ϵt . (5.4)

Regarding the weighting function, B(k;θ) can take different functional forms. According to

Ghysels et al., 2004; Ghysels et al., 2006, a beta formulation is proposed, which is the following:

B(k;θ1,θ2) = f ( k
m ,θ1,θ2)

řm
j=1 f ( j

m ,θ1,θ2)
(5.5)

where

f (l ,θ1,θ2) = lθ1´1(1 ´ l )θ2´1Γ(θ1 +θ2)

Γ(θ1)Γ(θ2)
, (5.6)

θ1 and θ2 are hyperparameters ruling the shape of the weighting function, and

Γ(θp ) =
ż 8

0
e´x xθp ´1d x (5.7)

9We use 20 lags of the daily realized volatility measure in the MIDAS mode, since a trading month consists of 20

trading days. The entire modeling framework is run with 40 and 60 lags included in the MIDAS model but they do

not offer further predictive information.
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is the standard gamma function. Apart from this functional form, Ghysels et al., 2005; Ghysels

et al., 2007 also proposed an exponential Almon specification, which is written as:

B(k;θ1,θ2) = eθ1k+θ2k2

řm
j=1 eθ1 j+θ2 j 2 (5.8)

Under this modeling framework, we generate industrial production forecasts for all special

aggregates and by using each of the realized volatility measures defined in Section 5.2. There-

fore, let IP(i ,RVasset )
t denote the i measure of industrial production (i.e. primary energy). RVasset

declares the realized volatility measures of the asset added as the high frequency variable in

the MIDAS model.

Regarding the prediction settings assumed in this chapter, we start with the sample used

for constructing industrial production predictions. The initial sample period is T0 = 53 months

and the remaining 60 months are used for evaluating the industrial production forecasts. More-

over, a rolling window estimation is applied with fixed length of 53 months. More specifically,

the parameters of the model are estimated by choosing data from the 1st to the 53r d and the

industrial production forecasts are generated afterwards. Then, we re-estimate the parame-

ters using data from the 2nd to the 54th and so on. The remaining period is the out-of-sample

period and is denoted as T1.

5.4 Evaluation framework

The evaluation framework employs two well-known loss functions, the Mean Squared Pre-

dicted Error (MSPE) and the Mean Absolute Error (MAE), which are defined as:

MSPE = 1

T1

T1
ÿ

t=1

(I P (i ,RVasset )
t+1|t

´ I P (i ,RVasset )
t+1 )2, (5.9)
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and

M AE = 1

T1

T1
ÿ

t=1

| I P (i ,RVasset )
t+1|t

´ I P (i ,RVasset )
t+1 |, (5.10)

where IP(i ,RVasset )
t+1|t

is the 1-day-ahead forecast of the measure i of the industrial production gen-

erated by using the RVasset , which is the realized volatility of the corresponding asset, IP(i ,RVasset )
t+1

is the IP at time t +1 and T1 is the number of the out-of-sample data points.

5.5 Out-of-sample results

The results of the two statistical loss functions that are used, namely MSPE and MAE, can be

found in Tables 5.3, 5.4, 5.5 and 5.6. From these results, we aim to investigate whether the

inclusion of higher frequency variables can enhance the predictability of the models used for

generating industrial production indices. Moreover, we study the predictive information of

crude oil volatility and check whether another asset’s realized volatility improves the forecast-

ing performance of the models. Finally, it is important to find which realized volatility measure

(e.g. realized positive semivariance) provides higher forecasting accuracy and which industrial

production measure benefits from this.

Regarding the MSPE results, Table 5.3 shows the relevant values for the models that do

not include explanatory variables at monthly frequency and they maintain only the realized

volatility measures. On the other hand, Table 5.4 presents the MSPE results for models that do

maintain information from explanatory variables sampled at monthly frequency.
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MSPE results

Models - only RV Total index Energy total Primary energy Drill. oil & gas wells

AR(3) 0.3119 2.1865 1.6069 14.7489

RV WTI 0.2648 1.7009 1.2471 15.9834

RSVN WTI 0.2739 1.7699 1.4076 17.1185

RSVP WTI 0.2629 1.6729 1.2105 14.5529

RV SP500 0.3307 2.3214 1.6738 16.9372

RSVN SP500 0.3294 2.3581 1.6962 17.0998

RSVP SP500 0.3234 2.3124 1.6327 16.3909

RV DX 0.3272 2.3057 1.5881 16.0835

RSVN DX 0.3145 2.2846 1.6087 15.4928

RSVP DX 0.3366 2.2178 1.6028 16.2229

RV TBILL 0.3100 2.3191 1.5507 15.1160

RSVN TBILL 0.3031 2.3321 1.5558 15.0959

RSVP TBILL 0.3090 2.2940 1.4812 15.6413

Models - only RV Non-energy total Consumer goods Business equipment Motor veh. and parts

AR(3) 0.2674 0.2459 0.6906 7.7771

RV WTI 0.2876 0.2710 0.6751 8.6577

RSVN WTI 0.2849 0.2641 0.6671 8.8019

RSVP WTI 0.2980 0.2689 0.6827 8.0833

RV SP500 0.2920 0.2524 0.7301 9.0219

RSVN SP500 0.2702 0.2540 0.7521 8.9205

RSVP SP500 0.2971 0.2460 0.7033 9.0510

RV DX 0.2990 0.2802 0.7984 8.1429

RSVN DX 0.2896 0.2664 0.7749 7.9813

RSVP DX 0.3130 0.2694 0.8122 8.0959

RV TBILL 0.2762 0.2627 0.7206 7.9223

RSVN TBILL 0.2664 0.2701 0.7184 7.9252

RSVP TBILL 0.2748 0.2504 0.7208 7.7555

Table 5.3 The results of the MSPE loss function for all industrial production measures. In the first
column, excluding the first model, which is a simple AR(3), the high frequency variable added in the
MIDAS models is presented at each row. It is noted that no monthly explanatory variable is included as
predictor in the models.
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MSPE results

Models - all exog. var. Total index Energy total Primary energy Drill. oil and gas wells

ARX(3) 0.2988 2.5178 1.9186 18.2713

RV WTI 0.2757 1.8502 1.5788 18.3212

RSVN WTI 0.2748 1.9650 1.7745 19.0497

RSVP WTI 0.2809 1.9569 1.4537 16.8436

RV SP500 0.3208 2.8373 1.9456 19.9549

RSVN SP500 0.3064 2.9508 1.8995 21.0037

RSVP SP500 0.2888 2.6849 1.9466 19.4989

RV DX 0.3290 2.7798 1.9416 19.1481

RSVN DX 0.3279 2.7059 1.9027 18.7852

RSVP DX 0.3295 2.8004 2.0227 20.8795

RV TBILL 0.3099 2.6963 1.8972 19.1765

RSVN TBILL 0.2898 2.6345 1.8805 18.5070

RSVP TBILL 0.2847 2.6568 1.9664 18.8432

Models - all exog. var. Non-energy total Consumer goods Business equipment Motor veh. and parts

ARX(3) 0.2899 0.3299 0.7869 8.4717

RV WTI 0.3336 0.3681 0.8648 9.2466

RSVN WTI 0.3312 0.3712 0.9155 9.6983

RSVP WTI 0.3234 0.3428 0.9252 8.8911

RV SP500 0.3193 0.3197 0.8926 9.5129

RSVN SP500 0.3192 0.3347 0.8930 9.3904

RSVP SP500 0.3238 0.3160 0.8551 9.2596

RV DX 0.3029 0.3604 0.8447 9.3959

RSVN DX 0.3107 0.3405 0.8167 9.2895

RSVP DX 0.3114 0.3444 0.8884 9.2198

RV TBILL 0.3088 0.3398 0.8727 9.0689

RSVN TBILL 0.2932 0.3497 0.8659 9.1415

RSVP TBILL 0.3150 0.3565 0.7918 9.2094

Table 5.4 The results of the MSPE loss function for all industrial production measures. In the first
column, excluding the first model, which is a simple AR(3), the high frequency variable added in the
MIDAS models is presented at each row. It is noted that all monthly explanatory variables are also
included as predictors in the models.
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First of all, it is observed that MIDAS models that include crude oil realized positive semi-

variance outperform all the remaining models when referring to the energy-related industrial

production measures. This means that volatility coming from positive crude oil returns has

higher predictive information on industrial production. More specifically, the forecasting er-

ror of the models including crude oil realized positive semivariance can be reduced, compared

to the simple AR(3) model, by more than 15% in total index and by almost 25% in case of pri-

mary energy. This holds true for the models that include other explanatory variables, such

as uncertainty indicators. In that case, the forecasting error can be reduced by almost 20%

compared to the ARX(3) model.

It is of major importance to mention that in order to generate forecasts of oil-related in-

dustrial production measures only WTI crude oil improves the forecasting performance com-

pared to the other assets, namely the S&P500 index, the U.S. dollar index and the U.S. T-bills.

From Tables 5.5 and 5.6, it is observed that the MAE results are qualitatively similar with the

exception of the drilling oil and gas wells aggregated measure of industrial production, in

which AR(3) beats all competing models, even those including explanatory variables, such as

macroeconomic variables and oil fundamentals. In case of primary energy, the MIDAS model

incorporating crude oil realized positive semivariance offers an almost 13% of reduction in

forecasting error. Similar results are presented in the MIDAS models that incorporate not only

realized volatility measures but also other potential determinants of industrial production. For

example, the MIDAS model with crude oil realized positive semivariance and the entire set of

explanatory variables sampled at monthly frequency outperforms the remaining models and

reduces the forecasting error by almost 16%, in terms of MAE, compared to the ARX(3) model.
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MAE results

Models - only RV Total index Energy total Primary energy Drill. oil and gas wells

AR(3) 0.4526 1.1819 0.9740 2.5747

RV WTI 0.4182 1.0519 0.8273 2.8729

RSVN WTI 0.4226 1.0623 0.9086 3.1149

RSVP WTI 0.4177 1.0263 0.8461 2.6548

RV SP500 0.4611 1.2281 1.0364 2.8971

RSVN SP500 0.4634 1.2240 1.0748 2.9432

RSVP SP500 0.4552 1.2267 1.0405 2.8353

RV DX 0.4613 1.2565 0.9996 2.7461

RSVN DX 0.4547 1.2401 0.9970 2.6678

RSVP DX 0.4681 1.2207 0.9919 2.7872

RV TBILL 0.4473 1.2114 0.9758 2.5863

RSVN TBILL 0.4395 1.2110 0.9672 2.6455

RSVP TBILL 0.4478 1.2101 0.9759 2.7039

Models - only RV Non-energy total Consumer goods Business equipment Motor veh. and parts

AR(3) 0.4350 0.3889 0.6892 2.1753

RV WTI 0.4244 0.4110 0.6490 2.3016

RSVN WTI 0.4196 0.4098 0.6382 2.3092

RSVP WTI 0.4398 0.4130 0.6485 2.2128

RV SP500 0.4499 0.3800 0.6965 2.3969

RSVN SP500 0.4368 0.3925 0.7171 2.3749

RSVP SP500 0.4559 0.3742 0.6877 2.4213

RV DX 0.4686 0.4094 0.7406 2.2690

RSVN DX 0.4627 0.3959 0.7283 2.2280

RSVP DX 0.4731 0.4035 0.7461 2.2934

RV TBILL 0.4266 0.4056 0.7054 2.2308

RSVN TBILL 0.4169 0.4077 0.7078 2.2319

RSVP TBILL 0.4461 0.4025 0.6904 2.2140

Table 5.5 The results of the MAE loss function for all industrial production measures. In the first
column, excluding the first model, which is a simple AR(3), the high frequency variable added in the
MIDAS models is presented at each row. It is noted that no monthly explanatory variable is included as
predictor in the models.
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MAE results

Models - all exog. var. Total index Energy total Primary energy Drill. oil and gas wells

ARX(3) 0.4521 1.2906 1.0963 3.0946

RV WTI 0.4148 1.0968 0.9406 3.1512

RSVN WTI 0.4200 1.1353 1.0159 3.2919

RSVP WTI 0.4129 1.1101 0.9182 2.9193

RV SP500 0.4670 1.3703 1.1465 3.3521

RSVN SP500 0.4494 1.3999 1.1360 3.4548

RSVP SP500 0.4400 1.3384 1.1442 3.2996

RV DX 0.4605 1.3462 1.1183 3.0821

RSVN DX 0.4742 1.3284 1.1102 3.0594

RSVP DX 0.4613 1.3335 1.1241 3.1672

RV TBILL 0.4740 1.3052 1.1165 3.2329

RSVN TBILL 0.4566 1.3065 1.0951 3.1121

RSVP TBILL 0.4378 1.3132 1.1285 3.0838

Models - all exog. var. Non-energy total Consumer goods Business equipment Motor veh. and parts

ARX(3) 0.4444 0.4470 0.6834 2.2179

RV WTI 0.4442 0.4708 0.6851 2.3277

RSVN WTI 0.4444 0.4711 0.7125 2.4441

RSVP WTI 0.4316 0.4587 0.7096 2.2698

RV SP500 0.4623 0.4300 0.7292 2.3664

RSVN SP500 0.4503 0.4461 0.7321 2.3784

RSVP SP500 0.4578 0.4277 0.7231 2.3683

RV DX 0.4525 0.4603 0.7187 2.3726

RSVN DX 0.4519 0.4480 0.7200 2.4022

RSVP DX 0.4552 0.4558 0.7273 2.3970

RV TBILL 0.4498 0.4616 0.7265 2.3892

RSVN TBILL 0.4281 0.4622 0.7279 2.3893

RSVP TBILL 0.4562 0.4782 0.6982 2.3649

Table 5.6 The results of the MAE loss function for all industrial production measures. In the first
column, excluding the first model, which is a simple AR(3), the high frequency variable added in the
MIDAS models is presented at each row. It is noted that all monthly explanatory variables are also
included as predictors in the models.
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With regard to the non energy-related industrial production measures, the results for both

MSPE and MAE are mixed. In general, the MIDAS models including both realized volatility

measures cannot beat the simple AR(3) and ARX(3) models. This happens only in case of busi-

ness equipment, where crude oil realized negative semivariance can reduce forecasting error

by 2% in comparison with the results of a simple AR(3) model. Concerning the predictive abil-

ity of the MIDAS models including realized volatility of the other assets, the results show that

the difference is almost zero, which means that the simple models do not benefit from the

inclusion of higher frequency variables representing uncertainty in financial markets.

Finally, we compare the results of the models including the monthly explanatory variables

and those that have only realized volatility measures as potential determinants of the indus-

trial production measures. It is obvious that MIDAS models including only realized volatility

measures and particularly those of WTI crude oil, outperform the models including additional

explanatory variables, namely the macroeconomic, oil-related and uncertainty-related vari-

ables. For example, in the case of primary energy industrial production, the MIDAS models

without monthly explanatory variables can reduce the forecasting error by more than 20%,

which means that daily realized volatility measures can adequately improve the forecasting

performance of a simple model. Qualitatively similar are the results for the non energy-related

industrial production measures, even if, in this case, a simple AR(3) seems to perform better

than more sophisticated models.

5.6 Conclusion

In this chapter, we focus on the impact of daily crude oil realized volatility measures on spe-

cial aggregates of industrial production in an out-of-sample investigation. More specifically,

models that incorporate variables at both monthly and daily frequencies are constructed with
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the main target of generating industrial production forecasts. To the best of our knowledge,

there is no existing work doing that. The contribution of this study is manifold. First of all, we

propose models with daily crude oil realized volatility measures, constructed by using intra-

day data, for forecasting special aggregates of industrial production in order to find whether

the forecasting performance of state of the art models is enhanced. Moreover, we investigate

whether realized volatility of other assets can offer forecasting gains and if so which aggre-

gates of industrial production can benefit from the inclusion of these measures. Finally, we

select a group of potential determinants of industrial production, including macroeconomic

variables, indicators of uncertainty and other oil-related variables and their predictive infor-

mation is investigated in an out-of-sample analysis.

The values of the statistical loss functions show that, in case of energy-related industrial

production measures, the forecasting performance of the MIDAS models including WTI crude

oil realized positive semivariance is significantly improved compared to simpler models that

do not include daily realized volatility measures. This holds true for both MSPE and MAE re-

sults. With regard to the non energy-related industrial production measures, it is observed that

neither crude oil realized volatility nor realized volatility of other assets can help to improve

the forecasting accuracy. However, there is only one case, that of business equipment exclud-

ing motor vehicles, where the MIDAS model with crude oil realized negative semivariance as

predictor beats the remaining models, even those that incorporate other exogenous variables,

such as factors of uncertainty. The main conclusion is that daily WTI crude oil price volatil-

ity is a significant driver for energy-related industrial production aggregates and has higher

predictive information compared to several macroeconomic variables, oil fundamentals and

indicators of uncertainty. This provides professional forecasters and policy makers with ev-

idence that they should use the MIDAS modeling framework to forecast monthly industrial

production. For the non energy-related industrial production aggregates, we draw the conclu-
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sion that more sophisticated models including exogenous information cannot beat a simple

AR(3) model.

The results of this chapter might be inspiring for academics and policy makers and open

new avenues for future research on this area. In this regard, the same methodology could be

applied for generating other macroeconomic variables that reflect economic outlook in the

U.S. or in other countries. Moreover, the evaluation framework could be enhanced by using

more statistical tests that can further justify the importance of oil price volatility for industrial

production forecasts. Finally, researchers can change the MIDAS model into a time-varying

MIDAS model by taking into account potential structural changes in the macroeconomic en-

vironment.
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Chapter Six

Thesis Conclusion

First of all, it would be important to mention that through this dissertation we tried to create

a story that starts from what matters when developing crude oil volatility forecasting frame-

works and which exogenous factors have high predictive information on crude oil realized

volatility afterwards. However, since crude oil investors seek ways that will help them mini-

mize the risk of their portfolios, we investigated whether there are hedging opportunities for

portfolios comprised of crude oil volatility and other assets’ volatility. Finally, the importance

of the daily crude oil realized volatility on the U.S. economic outlook is studied, which suggests

that policy makers should take crude oil volatility into account through the decision making

process. Therefore, we hope that the overview of this thesis presented above provides evidence

for an integrated analysis on the significance and uniqueness of the crude oil realized volatility

and we believe that this dissertation is going to have practical usefulness and be material for

future research on this topic.

More specifically, in this PhD thesis we bring together all the different elements in this

line of research and provide an answer as to what matters most for multi-step forecasts of

crude oil RV. Previous studies have shown that in the case of WTI crude oil the HAR-RV model

outperforms all other competing forecasting models. Therefore, the first study (Chapter 2)

aims to improve the forecasting performance of the HAR-RV model in order to capture the

changes of the coefficients by allowing time-variation in HAR-type models’ parameters and
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by implementing not only the direct approach but also the iterated methodology for obtaining

multi-period forecasts for RV and OVX. The goals of this study are considered of major impor-

tance for the rest of the thesis, since we rely on these RV measures in order to find potential

hedging opportunities and to study the effect of these RV measures on the U.S. economic out-

look. Therefore, evaluating the aforementioned models, it is obvious for the case of RV that

the impact of realized semi variance components is highly significant, and TVP models which

include these components outperform the remaining models at all forecasting horizons. Re-

garding the OVX forecasts, it is interesting to note that iterated forecasts including continuous

components from the decomposition of quadratic variation provide much better performance

in longer horizons, relative to other models. It is important to mention here that developing

MATLAB and R scripts for the entire methodological framework presented above was one of

the main challenges of this part of the thesis.

Apart from the methodological procedures, it is important to identify the drivers of crude

oil price volatility in an out-of-sample analysis. According to the second study (Chapter 3), it is

suggested that forecasters should take into account the fact that IV indices, namely VIX, VXD

and VXN, enhance the predictive accuracy of oil price volatility at short-run horizons, while

the economic policy uncertainty and geopolitical risk indices are information-rich at mid- and

long-run horizons. Finally, the proper combination of the aforementioned indicators, which is

done using the DMA approach, is considered crucial for forecasting oil price volatility and can

also generate high trading returns. The findings of the Chapters 2 and 3 could be considered

useful for investors, who search for accurate realized volatility forecasts in order to maximize

their profits. With regard to the latter implication, we would like to provide some suggestions

for future research.

In the third study of the thesis (Chapter 4), in which we examine whether there are hedg-

ing opportunities between WTI crude oil volatility and volatility measures of three other assets
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classes, the variance-covariance matrix is used for implementing a hedging strategy based on

the computation of the optimal portfolio weights. The empirical findings reveal that using the

optimal portfolio weights in the WTI - TBILLS portfolio is beneficial for WTI crude oil volatility

investors with hedging effectiveness reaching 95%. The U.S. dollar index is also considered an

efficient asset for hedging WTI crude oil volatility, whereas the S&P500 could be less appro-

priate for hedging purposes with hedging effectiveness ranging from 47.7% to 80% for volatile

and tranquil periods, respectively.

According to the final study of the thesis (Chapter 5), in which we study whether the crude

oil volatility measures are important for the U.S. economy, the forecasting performance of

the MIDAS models including WTI crude oil realized positive semivariance is significantly im-

proved compared to the remaining models in the case of energy-related industrial production.

This provides professional forecasters and policy makers evidence that they should use the MI-

DAS modeling framework to forecast monthly industrial production. With regard to the non

energy-related industrial production measures, it is observed that neither crude oil RV nor RV

of other assets can help to improve the forecasting accuracy in terms of either statistical loss

function.

One of the main limitations of the present thesis is that the covid-19 period is not included

in the analysis due to the fact that our intra-day dataset is limited to 7 years (from 2010 to 2017).

The crude oil market was subject to severe shocks during the covid-19 pandemic, which could

be interesting to be investigated in depth in terms of out-of-sample forecasting. We would

therefore motivate future studies to focus on this specific period (02/2019-now) and check

whether our findings hold true for the latter period as well. Our 7-years dataset (intra-day data)

creates another limitation when referring to Chapter 5, which focuses on forecasting monthly

industrial production. More specifically, we could have developed forecasting frameworks for

the U.S. GDP and its main components but the small sample period does not allow that be-
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cause of the quarterly frequency of the macroeconomic variables. Finally, in the present thesis

we develop forecasting frameworks for the crude oil market, which could be enhanced by de-

veloping modelling frameworks for other markets, as well, in order to compare the findings.
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APPENDIX



Appendix One

Chapter 2 - TVP equations

The one-step ahead forecast and posterior distributions are developed with the significant

contribution of kalman filtering, which helps us update the equations of the system. Kalman

filtering begins with the result:

(αt´1 | y t´1) „ N (α̂t´1,Σt´1|t´1), (A.1)

Kalman filtering proceeds using:

(αt | y t´1) „ N (α̂t´1,Σt |t´1), (A.2)

where Σt |t´1 =Σt´1|t´1 +Σut .

Raftery et al. (2010) note that things simplify substantially if this latter equation is replaced

by:

Σt |t´1 =
1

λ
Σt´1|t´1. (A.3)

Involving the forgetting factor λ (0 ď λ ď 1), that refers to a gradual evolution of coeffi-

cients1. It is common to choose a value of λ near one, suggesting a gradual evolution of coeffi-

cients. Take into consideration Raftery et al. (2010), we also set it λ= 0.99. Moreover, we have

Σut = (1 ´λ´1)Σt´1|t´1.
1In econometrics the forgetting factor approach has long been implemented in the state space literature going

back to Fagin (1964) and Jazwinsky (1970). The name ”forgetting factor” is proposed by the fact that this specifica-

tion implies that observations j periods in the past are weighted by λ j .
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However, according to Grassi et al. (2017), the updating equation of Σt |t´1 in (A.2) is per-

turbed by a function of the squared prediction errors. Thus, the equation (A.3) is replaced by

Σt |t´1 =Σt´1|t´1. (A.4)

We should also note at this point that under the contribution of those two specifications,

we no longer have to estimate Σut . Kalman filtering is then completed by the updating equa-

tion:

(αt | y t ) „ N (α̂t ,Σt |t ), (A.5)

where

α̂t |t = α̂t |t´1 +Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1(yt ´ xt α̂t´1), (A.6)

and

Σt |t =Σt |t´1 ´Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1xtΣt |t´1, (A.7)

for the case of the forgetting factor’s approximation. Nevertheless, the updating step in (A.7)

is replaced by

Σt |t =Σt |t´1 ´Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1xtΣt |t´1 +β ¨ max
[

0,F L
( ε2

t

Ĥt
´ 1

)]
¨ I , (A.8)

where εt = yt ´ xt α̂t´1 and the estimated error variance is calculated by the following2:

Ĥt = κĤt´1 + (1 ´κ)ε2
t . (A.9)

2The design parameters β and κ are set as 1e-10 and 0.94, respectively.
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Recursive forecasting is implemented by using the predictive distribution,

(yt | y t´1) „ N (xt α̂t´1, Ĥt +xtΣt |t´1x 111
t ). (A.10)

According to Koop and Korobilis (2012), these results are analytical and, thus, Markov chain

Monte Carlo (MCMC) algorithm is not required.
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Appendix Two

Chapter 2 - Results based on the MAE
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Realized volatility - MAE ratios of HAR-type models to the RW model

Days ahead 1 5 10 15 22 44 66

RW 6.63 8.37 9.44 9.85 11.01 12.52 14.11

OLS - DIRECT

HAR-RV 0.86 0.86 0.85 0.89 0.86 0.88 0.84

HAR-C 0.86 0.86 0.86 0.89 0.87 0.89 0.84

HAR-RSV 0.86 0.86 0.85 0.88 0.85 0.89 0.86

OLS - ITERATED

HAR-RV 0.86 0.86 0.85 0.89 0.86 0.88 0.86

HAR-C 0.86 0.86 0.86 0.90 0.87 0.89 0.86

HAR-RSV 0.86 0.85 0.84 0.88 0.85 0.87 0.86

TVP - DIRECT

HAR-RV 0.86 0.85 0.85 0.88 0.86 0.89 0.87

HAR-C 0.86 0.85 0.85 0.88 0.86 0.89 0.87

HAR-RSV 0.86 0.85 0.83 0.85 0.84 0.87 0.87

TVP - ITERATED

HAR-RV 0.86 0.85 0.84 0.87 0.83 0.83 0.81

HAR-C 0.86 0.85 0.84 0.87 0.84 0.83 0.81

HAR-RSV 0.86 0.84 0.83 0.86 0.82 0.83 0.82

Table B.1 The results of the MAE loss function for different forecasting horizons re-
garding RV forecasting errors. Values represent ratios of HAR-type models to the RW
model. A ratio below 1 suggests that MAE of the corresponding HAR-type model out-
performs that of the RW model. We present the actual MAE values only for the RW
model.
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Oil price implied volatility index - MAE ratios of HAR-type models to the RW model

Days ahead 1 5 10 15 22 44 66

RW 1.37 2.94 3.97 4.90 5.84 8.39 10.37

OLS - DIRECT

HAR-OVX 1.00 1.01 1.02 1.02 1.02 0.97 0.93

HAR-OVX-C 2.75 1.52 1.32 1.22 1.19 1.05 0.94

HAR-OVX-RSV 2.61 1.48 1.29 1.20 1.17 1.05 0.95

OLS - ITERATED

HAR-OVX 1.00 1.02 1.03 1.01 1.01 1.00 0.97

HAR-OVX-C 2.75 1.52 1.29 1.20 1.13 1.01 0.93

HAR-OVX-RSV 2.61 1.46 1.23 1.15 1.09 0.99 0.93

TVP - DIRECT

HAR-OVX 1.00 0.99 1.00 0.99 1.00 0.99 0.99

HAR-OVX-C 2.74 1.54 1.37 1.25 1.21 1.12 1.03

HAR-OVX-RSV 2.56 1.53 1.34 1.26 1.20 1.11 1.05

TVP - ITERATED

HAR-OVX 1.00 1.01 1.02 1.00 0.99 0.95 0.91

HAR-OVX-C 2.74 1.49 1.27 1.17 1.10 0.96 0.87

HAR-OVX-RSV 2.56 1.46 1.23 1.14 1.07 0.95 0.88

Table B.2 The results of the MAE loss function for different forecasting horizons re-
garding OVX forecasting errors. Values represent ratios of HAR-type models to the
RW model. A ratio below 1 suggests that MAE of the corresponding HAR-type model
outperforms that of the RW model. We present the actual MAE values only for the
RW model.
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Appendix Three

Chapter 3 - DMA approach

In this part, we concentrate on the one-step ahead forecasting procedure in order to show the

updating steps of the DMA approach in detail.

The main methodological approach of the updating equations of the TVP model is based

on the Kalman filter, which begins with the result:

(αt´1 | y t´1) „ N (α̂t´1,Σt´1|t´1), (C.1)

The Kalman filtering process proceeds as follows:

(αt | y t´1) „ N (α̂t´1,Σt |t´1), (C.2)

where Σt |t´1 =Σt´1|t´1 +Σut .

Since we are motivated by the approach that Grassi et al. (2017) propose, the updating

equation ofΣt |t´1 is perturbed by a function of the squared prediction errors, which is shown

in the updating steps. At this step, we assume the following:

Σt |t´1 =Σt´1|t´1. (C.3)

At this point, we have to mention that due to the fact that we use the aforementioned ap-

proach, we no longer have to estimate Σut . Kalman filter procedure is completed by the up-

dating equation:

(αt | y t ) „ N (α̂t ,Σt |t ), (C.4)
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where

α̂t |t = α̂t |t´1 +Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1(yt ´ xt α̂t´1), (C.5)

and

Σt |t =Σt |t´1 ´Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1xtΣt |t´1 +β ¨ max
[

0,F L
( ε2

t

Ĥt
´ 1

)]
¨ I , (C.6)

where εt = yt ´ xt α̂t´1 and the estimated error variance is calculated by the following1:

Ĥt = κĤt´1 + (1 ´κ)ε2
t . (C.7)

Recursive forecasting is implemented by using the predictive distribution,

(yt | y t´1) „ N (xt α̂t´1, Ĥt +xtΣt |t´1x 111
t ). (C.8)

After having estimated each individual model of the K combinations under the TVP ap-

proach, which is explained analytically in the previous part, the DMA averages the forecasts

obtained by the individual models using πt |t´1,k as weights for k = 1, . . . ,K over the out-of-

sample period. Those DMA forecasts can be expressed as:

E(yt | y t´1) =
K

ÿ

k=1

πt |t´1,k x (k)
t´1α̂

(k)
t´1 (C.9)

where α̂(k)
t´1 are the Kalman filter estimates of the state-space model at time t ´ 1.

At this point, probability in the forecasting model has to be determined. As proposed by

Raftery et al. (2010), the relation between πt |t´1,k and πt´1|t´1,k is described as:
1The design parameters β and κ are set as 1e-10 and 0.94, respectively.

179



πt |t´1,k =
πα

t´1|t´1,k
řK

l=1π
α
t´1|t´1,l

(C.10)

where 0 <αď 1 is a forgetting factor2, which is constant and smaller than 1.

The updating equation is defined as follows:

πt |t ,k = πt |t´1,k fk (yt | y t´1)
řK

l=1πt |t´1,l fl (yt | y t´1)
(C.11)

where fk (yt | y t´1) is the predictive density of model k. The main idea of this updating equa-

tion is that a model, which had a better forecasting performance in the past, will receive higher

weight at time t .

2In this study, we follow Koop and Korobilis (2012) in setting α= 0.99.
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